From Point Cloud to 2D and 3D Grids: A Natural Neighbor Interpolation Algorithm using the GPU

Alex Beutel

Planes scan the terrain A4 | e Once the data is
: — —_——
using lasers to record the To use the data in geographic ,éx £_>‘§@§§ Zﬁ/, modeled as a grid, we

|
height of billions of points information systems we must / X\\%K\ /‘\/\ I ‘\ can use it to perform
on the ground. model the terrain as a grid. / FNN - / flood mapping.
IESHEAY |

M=

Because there is no l\/\ A/\$Z\’\M§ZJ:§\ ;
data, we must interpolate Ikﬁ\/ l]@%%ﬁ?tﬁ\ // l S
|

h V4

structure to the scanned M%\Agiq\/ \/\\ y
These points can be the height at each grid ”\ G oL BTG

viewed as a terrain point. Doing this quickly v seised) e e Gl

N 2
= /
on the computer. for millions of grid points ég%Liﬁﬁ/ \%\\\w resolution grids. Only
SS A

based on billions of data . . . :
S Sl NL— the high-resolution grid
points is our challenge. L= =_w shows the dike that
prevents the island
from flooding daily.

Problem: Previous work: Our approach and contributions: Our Results:

With modern LiDAR technology the For grid DEM construction: Build high-quality, large-scale grid DEMs with a natural Our algorithm can construct a high-
amount of topographic data, in the * Linear interpolation (Agarwal et al. 2005) — neighbor based interpolation scheme using the GPU resolution grid with 150 million cells
form of massive point clouds, has Simple, relatively fast, but not smooth * Handle gaps in data by introducing the idea of region from 2 billion data points in less than 37
increased dramatically. One of the Regularized splines with tension (RST) of influence minutes.

most fundamental GIS tasks is to (Mitasova et al. 1993) — high quality, great with Exploit the fact that we only interpolate at grid points * Our algorithm takes approximately 2%
construct a grid digital elevation sparse data, but slow using clever blocking. Handle 10° NNI queries in one of the time of RST and 10% of the time
model (DEM) from these point clouds. Natural Neighbor Interpolation (NNI) on the GPU: pass. Previous maximum of ~32 [Fan et al. SIAM, 2005] of linear interpolation

Our challenge is make an efficient, + Hoff et al. (1999) used the GPU to construct Use CUDA to improve performance of our For constructing 3D grids we find
scalable algorithm that can construct the Voronoi diagram implementation memory trade-offs that reduce the total
high-resolution large-scale grid DEMs. * Fan et al. (2005) used the GPU to perform NNI Perform higher dimensional NNI on the GPU to running time by a factor of three.

We aim to do this for both spatial on 32 points simultaneously construct grid DEMs in time based on spatial-temporal

data as well as spatial-temporal data. data

We base our interpolation off of the
Voronoi diagram, a division of space
into Voronoi cells. Each Voronoi cellis
the region for which a given input
point is the closest input point.

To interpolate the height at a point, we draw a

Voronoi cell for the query and use the area stolen
from surrounding Voronoi cells to compute a -

weighted average of the surrounding points’ heights.

One way to check which point is closer is
to draw cones from each input point and
see where they intersect. The cone is the
distance function and the intersection is

the bisector. -

For the area we count pixels
drawn on the graphics card.
There are 73 pixels total in the
Voronoi cell of ¢,.
h(q,)=(G3/73)h(p)+(/73)h(p,)
+(28/73)h(p3)

If we use the graphics card to draw a cone for each
input point and view them all from underneath we see
a Voronoi diagram. This is called the lower envelope.

NNI in 3D is largely the same as in
— 2D. Upon adding a query (a), we
analyze from which Voronoi cells it
. stole volume (b). To perform the
weighted average we count the
stolen pixels in each time slice and
' atthe end findithe height of the
query, as shown below.
[

In 3D, a Voronoi diagram is the same
general concept — a subdivision of
space into Voronoi cells. Where we
previously discretized space into
pixels, we now discretize 3D space
into cubes called voxels.

Since points are also offset in time,
we not only draw cones but also
hyperboloids. Again, looking from (@
below reveals the Voronoi diagram.

o

!

We can reduce the computation of a
3D Voronoi diagram to computing the
2D Voronoi diagram for each slice of
voxels in time.

