
Convergence with Projections:

Local Projections: Can add sparsity, non-negativity, or even simplex constraints in local updates.

Distributed Projections: Can also have simplex constraints across blocks, i.e. simplex down
the columns of U.

Z2’’ Z2’ Z2

Z1’’ Z1’

Partition
&

Sort

FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop
Alex Beutel, Abhimanu Kumar, Evangelos Papalexakis, Partha Pratim Talukdar, Christos Faloutsos, Eric P. Xing

{abeutel,abhimank,epapalex,ppt,christos,epxing}@cs.cmu.edu
Carnegie Mellon University, School of Computer Science

FLEXIFACT PROPOSED METHODS EXPERIMENTAL RESULTS MOTIVATION

References
[1] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD �11
[2] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradi- ent descent. In
NIPS 2010.
[3] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In KDD’ 12

Factoring your data into its component pieces can be insightful for data mining,
and useful for prediction. We give a common motivational example below:

We consider the Netflix challenge, where we would like to find latent
relations between users and movies for predicting user preferences.

Movie Features

Movies

Users

Time

Coupled Matrix-Tensor Factorization

Y

X ≈U V W
Y ≈UAT

Approach:
We divide our LX(i,j)(U,V) and LY(i,j,k)(U,A,B) into blocks Zb that are independent and
interchangeable. We perform SGD on each block independently, and certain groups of blocks,
called a stratum, can be run in parallel. We run each stratum once (called a subepoch, together a
full epoch).

Stratification Rule:
The key property for independence, which we will prove later, is that for (i,j,k) in Zb and
(i’,j’,k’) in Zb’ we must have i≠i’ j≠j’ and k≠k’. We give examples of such divisions below.

LYi, j (U,A) = (Yi, j − Ui,rAj,r)
2

r=1

rank

∑

For SGD we must break our objective into distinct pieces.

LXi, j ,k (U,V,W) = (Xi, j,k − Ui,rVj,rWk,r)
2

r=1

rank

∑
where

L = X −U V W + Y −UAT = LXi, j ,k (U,V,W)
i, j,k
∑ + LYi, j (U,A)

i, j
∑

Because of the tensor, we show three of the nine necessary strata.

Z1 Z1 Z1’
Z1’ Z1’’ Z1’’

Z2 Z2 Z2’ Z2’ Z2’’
Z2’’

Z3 Z3 Z3’ Z3’ Z3’’ Z3’’

Convergence

Check out our code!

FLEXIFACT DSGD [6] PSGD [9] Matlab GigaTensor [7]
Data/Model
Matrix � � � �
Tensor � � �[4] �
Coupled Tensor/Matrix � � �[2]
Obj. Function
Frobenius norm � � � � �
Frobenius norm + �1 penalty � � �
Non-negativity constraints � � �
Handles missing data � � � �
Scalability
in number of non-zeros � � � �
in data dimensions � � �
in decomposition rank � � � �
Proof of convergence
Matrix Factorization � �
Tensor/Coupled Factorization � � �

Projections (�1 & non-negativity) � �
Table 1: Feature Comparison of proposed FLEXIFACT vs state of the art. (� represents unknown
or not directly applicable.) FLEXIFACT contains existing state of the art as special cases.

(user, demographic) matrix, efficient tensor decomposition of truly large datasets can be challenging,
attracting increasing interest.

Most prior work has either focused on a specific type of factorization or a specific loss function (e.g.
Frobenius norm), thus having a limited range of potential applications. Here we propose FLEXI-
FACT, a flexible and highly scalable distributed factorization algorithm which attacks a very broad
spectrum of problems: FLEXIFACT can handle matrices, tensors, coupled tensor-matrix settings,
cross product a variety of loss functions, including Frobenius norm, KL divergence, �1 regulariza-
tion, and non-negativity constraints.

Moreover, FLEXIFACT is very fast and scalable; we show how to implement it on Hadoop, and
we show how to achieve high speeds, by distributing both the data as well as the parameters. In
Table 1 , we provide a comprehensive overview of the state of the art. In short, FLEXIFACT reigns,
combining both scalability, as well as versatility.

In summary, our main contributions are:

1. Versatility: FLEXIFACT can operate under a wide spectrum of settings, including plain
matrix factorization, tensor factorization, as well as coupled decompositions. Thus, FLEX-
IFACT includes several recent methods [6], [7], as special cases.

2. Scalability: FLEXIFACT scales very well both with the input size, as well as with the
number of model parameters.

3. Proof of convergence: We prove that FLEXIFACT converges, even with constraints like
non-negativity. Moreover, we demonstrate this empirically.

4. Usability and Reproducibility: Our implementation runs on stock Hadoop, as opposed to
other recent methods [6]. We also open-source our code.

2 FLEXIFACT Approach

As mentioned previously, we take on the problem of matrix, tensor and coupled factorization. For
brevity, we do not include here the mathematical details of the loss functions and SGD updates.
The complete documentation can be found in Appendix A. Building off of recent work in stochastic
learning theory [?] and matrix factorization [6], we develop a block scheme for the model and data
to parallelize the computation across a cluster. The details of our blocking scheme can be found
in Appendex B. As a quick summary, we see an example of blocking scheme in Figure 1 and the
general algorithm we follow in Algorithm 1.

Additionally, in order to support non-negative factorizations as well as sparsity constraints, we prove
using stochastic learning theory that our process is regenerative, even under projections, and thus
our algorithm converges. The proof can be found in Appendix C.

2

[1] [2]

1.  Versatility: Plain matrix factorization, tensor factorization, coupled

decompositions. Also include sparsity, non-negativity, etc.
[1], [3] are special cases.

2.  Scalability: Scales in input size and number of model parameters.
3.  Proof of convergence: Including under projections.
4.  Usability and Reproducibility: Runs on stock Hadoop, as opposed to

other recent methods [1]. We also open-source our code.

OUR CONTRIBUTIONS

We run experiments on synthetic data, generated by recursive Kronecker products.
We compare against PSGD [2] and Gigatensor [3].

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 400 600 800 1000

T
im

e
 (

m
in

u
te

s)

Rank of Factorization

PSGD runs out of memory
for R >= 100

FlexiFaCT
Gigatensor

PSGD
FlexiFaCT Coupled

(a) Time vs. rank

 0

 500

 1000

 1500

 2000

 2500

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

T
im

e
 (

m
in

u
te

s)

Dimension of Tensor (in millions)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(b) Time vs. dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

25M 50M 75M 100M

T
im

e
 (

m
in

u
te

s)

Number of Observations (size of data)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(c) Time vs. # observations

Figure 2: Scalability of FLEXIFACT in terms of: a) rank, b) data dimensions, and c) number of
observations. We observe that FLEXIFACT scales very well with respect to all aspects. PSGD can
be seen in sub-figure (a) before it runs out of memory. FLEXIFACT was applied to both a tensor,
and a matrix-tensor couple, whereas GigaTensor was only applied to a tensor.

decompose each tensor with R = 50. When testing the coupled FLEXIFACT decomposition, we
add an additional coupled matrix with 100,000 data points and the same dimensionality as the main
tensor.

In Figure 2(b) we show how coupled factorization using FLEXIFACT scales, as the dimensions of
the data increase. We observe that FLEXIFACT runs much faster than the baseline, GigaTensor. A
likely explanation for the degree to which FLEXIFACT is faster than GigaTensor is that FLEXIFACT
only focuses on the observed data points, where GigaTensor has to convert unobserved data points to
zeros, thus slowing down the computation. Again, for the coupled case, note that our total parameter
space reaches 2 billion parameters.

Data Size Scalability Last, for data scalability, we vary the number of observed data points from 1
million to 10 million. Figure 2(c) shows FLEXIFACT’s running time as a function of the data size,
i.e. the number of observations. We can see that FLEXIFACT has, again, very smooth behaviour,
and scales linearly with the number of observed elements. Again, we are significantly faster than
GigaTensor, though the degree of difference is likely because it is must make unobserved points
zeros for it to run.

3.3 Correctness & Monotone Convergence

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 400 800 1200 1600 2000

R
M

S
E

Time (seconds)

FlexiFaCT
PSGD

Figure 3: Convergence: RMSE vs. time, for
tensor factorization comparing FLEXIFACT and
PSGD [9]. Note, Zinkevich et al. [9] do not claim
to work on this problem because it is not convex.

Besides speedup, we experimentally validate
that FLEXIFACT indeed decreases monotoni-
cally the objective function that it is minimiz-
ing. To test this we run on a small synthetic
data set with D = 10, 000 and 10 million data
points, making the dataset very dense. We run
a factorization with R = 50 using our im-
plementation of PSGD and FLEXIFACT with
both ⌅1 sparsity and non-negativity constraints.
We then monitor the root mean squared error
(RMSE).

Figure 3 shows that FLEXIFACT decreases the
RMSE as expected, and at a much quicker pace
than PSGD. It is important to note that the slow
convergence of PSGD is because the problem
(tensor factorization) is not convex, and thus
Zinkevich et al. do not claim that their method
works on such problems. However, we use

PSGD as a comparison because it is not possible to track the RMSE with GigaTensor and thus
PSGD is the closest competitor.

4

In the real world we have much more data. The Netflix dataset includes
when the review was given, allowing us to formulate our data as a tensor
and perform a tensor factorization.

We also can easily find who directed the movie, what genre is the movie,
what actors are in it, how much did it cost, etc. We can incorporate all of
this information through a coupled factorization.

Building on Stock Hadoop:

High Level: Reducers perform most computation.
Reducers store model parameters in memory and pass
them to other reducers between subepochs using HDFS.

Y⇡

�
S(1)
1

S(1)
2

S(1)
3

B1,1

B2,2

B3,3

S(2)
1 S(2)

2 S(2)
3

S(1)
1

S(1)
2

S(1)
3

B1,2

B2,3

B3,1

S(2)
1 S(2)

2 S(2)
3

S(1)
1

S(1)
2

S(1)
3

B1,3

B2,1

B3,2

S(2)
1 S(2)

2 S(2)
3

Figure 2: Example of data and model partitioning along with the three subepochs.

S(2)

1

S(1)

1

S(1)

2

S(2)

2

S(1)

3

S(2)

3

Figure 3: Movement of parameters through the
cloud between subepochs.

and transfer the necessary pieces of the topic model to the
appropriate machines. The movement of model variables
across a cluster can be seen in Figure 3.

3.4 Systems Implications
While the design choices here are described algorithmi-

cally, they have important implications on the system. Re-
cent similar systems take a variety of approaches to data par-
titioning. PSGD [24] partitions the data entirely randomly
in each epoch. This results in all of the model variables be-
ing duplicated across the cluster servers. After each epoch
the model variables across the servers are averaged together.
This is an ine�cient use of system resources since the entire
model is stored on every server and because of averaging of
the model variables the system gives much worse quality re-
sults for non-convex problems, such as topic modeling and
the other applications discussed in this paper.

GraphLab [15, 13, 14], one of the most popular systems
for distributed machine learning today, focuses on modeling
dependencies between data and variables through a graph
and ensures serializability through locking a node’s edges.
However, because nodes picked do not correspond to an e�-
cient model and data partition, locking their adjacent edges
results in contention and a loss of parallelization. Addition-
ally, similar to PSGD, model variables are sometimes stored
on multiple servers resulting in ine�cient use of memory
(since GraphLab does not roll over onto the disk).

As has been shown in previous stochastic learning liter-
ature [10] and used in simpler data mining problems [9],

our relational blocks enable improved parallel processing.
In particular, because blocks in each stratum are indepen-
dent, locking of variables corresponding to each block hap-
pens naturally and avoids any contention. Additionally, like
GraphLab, we store model variables in memory which allows
for computation on each block to happen quickly. However,
when storing the model in memory, it is necessary to be e�-
cient in our memory usage. By paritioning our model as well
as the data, every variable is only stored on one server at a
time and thus our memory usage is minimized. As we will
show experimentally later, this lets us use far fewer machines
for the same size of problems than PSGD and GraphLab.

4. LEARNING
The model and data abstraction defined in Section 3 is a

convenient view for distributed computing of a large scale
machine learning (ML) problem. The partition abstraction
is used to distribute the learning phase over di↵erent com-
puting units. We can then use either of the two general
learning schemes to learn model variables on each block: 1)
Sampling based learning, 2) Gradient based learning.

4.1 Sampling based learning scheme
Sampling based approaches take a probabilistic view of

the problem. They learn the parameters of the model by
approximating the probability distribution of the true data.
This scheme iteratively samples randomly from a changing
distribution that is a↵ected by the samples drawn. The dis-
tribution eventually reaches an equilibrium. The parameters
of this stationary distribution are our solutions (parameters
of the model) and are used further down the pipeline for
prediction.

4.2 Gradient based learning
In gradient based learning an objective function is mini-

mized to find the parameters of the model. The optimiza-
tion procedure is formulated in a way to abstract away the
probabilistic components of the model, if any present. For
example in the case of TM we optimize the objective L de-
fined in (3) by computing the derivatives @L

⇡

and @L

�

with

respect to ⇡ and � respectively. The new value ⇡

0
is

⇡

0
i,k

= ⇡

i,k

� ⌘@L

⇡i,k

where for topic modeling

@L

⇡i,k = 2 ⇤
X

j

(Y
i,j

�
X

k

⇡

ik�j,k

)�
j,k

.

4

Mappers
Reducers

Place data
points

HDFS

HDFS

U1 V1 W1 A1

U2 V2 W2 A2

U3 V3 W3 A3

into their
appropriate

relational
blocks

Z1

Z3’’ Z3’ Z3

…

…

Run Updates on

Run Updates on

Run Updates on

V1 V2 V3

U3

U2

U1

A1 A2 A3

X

A V

U

≈

[3]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 400 600 800 1000

Ti
m

e
(m

in
ut

es
)

Rank of Factorization

PSGD runs out of memory
for R >= 100

FlexiFaCT
Gigatensor

PSGD
FlexiFaCT Coupled

 0

 500

 1000

 1500

 2000

 2500

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

Ti
m

e
(m

in
ut

es
)

Dimension of Tensor (in millions)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

25M 50M 75M 100M

Ti
m

e
(m

in
ut

es
)

Number of Observations (size of data)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

✓ Scales well for rank
(number of parameters)

Scales to over 4 Billion

Parameters

✓ Scales well in data size
(number of observations)

✓ Scales well in dimension of
the tensor

Fits over 2 Billion Parameters

✓ Converges to high accuracy
results

Rough Proof Sketch:

where L

si
x

(✓(t)) is the loss function at stratum s

i

at a point x in iteration t given parameter value in
previous iteration ✓

(t) . rL

0(✓(t)) is the exact gradient
in iteration t given previous parameter value ✓

(t). And

(4.16) �M

t

= rL

si
x

(✓(t))�rL

0(✓(t))� �

t

where �

t

is the “error” before projection i.e. the error
by which the update is outside P.

To prove the convergence of the method we define
the following conditions, similar to the ones defined
in [14, 10]:

Condition 1. rL

0(✓) is continuous.
Condition 2. rL

0(✓(t)) is bounded in second
moment: E[(rL

0(✓(t)))2] < 1 for all ✓.
Condition 3. The squared sum of the step sizes ⌘

t

is bounded i.e.
P

t

⌘

2

t

< 1.
Condition 4. The noise is martinagale di↵erence:

E[�M
(t+1)

|�M
i

, i t] = �M

t

.
Condition 5. E[⌘

t

�

t

] < 1 with probability 1.
Note that this is a condition on step-size. It implicitly
says that the projection must not wander o↵ infinitely
outside the set P over the iterations.

Theorem 4.2. The distributed SGD algorithm for ten-

sor decomposition with projections, as presented in al-

gorithm 1, converges.

Proof. The primary equations being updated each
time in our iterations is equation 4.15. Rewriting it here
we have:

✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

�M

t

+ ⌘

t

�

t

+ ⌘

t

p(✓(t))

(4.17)

From theorem 4.1 we can see that the individual
blocks in a given stratum are independent of each
other’s updates and are interchangeable. We can also
observe from Algorithm 1 that every stratum out of d
strata is picked exactly once in one cycle i.e. one epoch
(outer while loop). Moreover two di↵erent cycles of
strata i.e. iterations of the while loop are identical and
independent. In other words the while loop forms an
i.i.d cycle, and thus a regenerative process. The time-
period of cycles is finite and bounded consequently that
of the regenerative process too. Besides given all the
conditions 1 to 5 as defined above, we have

(4.18)

2

4
(t+t

0

)�1X

i=0

(⌘
i

�M

i

+ ⌘

i

�

i

)

3

5 ! 0

for any arbitrary . The proof is similar to [14] and is
valid due to the fact that noise is a martingale di↵erence
sequence and ⌘

i

�M

i

and ⌘

i

�

i

are an equicontinuous

Algorithm 2: FlexiFaCT Mapper (for tensor)

Input: I, J,K, d

1: for all (i, j, k,X
i,j,k

) do
2: b

i

= b i

d I
d e
c, b

j

= b j

d J
d ec, bk = b k

dK
d ec {Get block

index}
3: subepoch =

d⇥ ((b
k

� b

i

+ d) mod d) + ((b
j

� b

i

+ d) mod d)
4: emit h(b

i

, b

j

, b

k

, subepoch), (i, j, k,X
i,j,k

)i
5: end for

sequence ([14] Theorem 2.1, part 1, chapter 5; [10]
follows a similar proof up to this point). We can now
use this to analyze the updated with a projected loss.
We find that equation 4.15 has the same set of stable
points as

(4.19) ✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

p(✓(t))

Now we show that equation 4.19 converges.
Through few algebraic manipulations it can be veri-
fied that the projection functions p(·) we have, `1 soft
threshold and non-negativity constraint project, are lip-
schitz continuous. Following the arguments of [14] (the-
orem 2.1, part 2) and with the assumption that updates
✓

(t) are bounded (follow from the conditions 1 to 5 as-
sumed earlier), equation 4.19 converges to a set of sta-
tionary points. ⇤

5 MapReduce Implementation of FlexiFaCT

Along with our theoretical analysis, we implemented our
algorithm within the MapReduce framework [9]. To
do this we used the open source Hadoop [1] version
of MapReduce. The challenge is to turn the factoriza-
tion problem into map() and reduce() functions, that
Hadoop is designed to handle.

In our implementation we pass the data ma-
trix or tensor as input to the mappers in the form
(i, j, k,X

i,j,k

). We also store our current parameters
✓

(s), which could include U, V, W, and A on the
Hadoop File System (HDFS).

FlexiFaCT Mapper: Our Mapper function, is
shown in Algorithm 2. It splits the data into the
appropriate blocks and determines the order they should
be processed in within each reducer. We also overload
the default Hadoop partitioner, which typically just
partitions on uniqueKey values, and now partition only
on b

i

so that each reducer represents a unique set of i
in I or a unique set of rows in U. We additionally
override the default Comparator, allowing us to sort
our (Key,Value) pairs within each reducer by the
subepoch term calculated in the Mapper. We see here
while the Mapper is quite simple, the calculation of the

SGD Update can be written as:

(see paper for full details)

where L

si
x

(✓(t)) is the loss function at stratum s

i

at a point x in iteration t given parameter value in
previous iteration ✓

(t) . rL

0(✓(t)) is the exact gradient
in iteration t given previous parameter value ✓

(t). And

(4.16) �M

t

= rL

si
x

(✓(t))�rL

0(✓(t))� �

t

where �

t

is the “error” before projection i.e. the error
by which the update is outside P.

To prove the convergence of the method we define
the following conditions, similar to the ones defined
in [14, 10]:

Condition 1. rL

0(✓) is continuous.
Condition 2. rL

0(✓(t)) is bounded in second
moment: E[(rL

0(✓(t)))2] < 1 for all ✓.
Condition 3. The squared sum of the step sizes ⌘

t

is bounded i.e.
P

t

⌘

2

t

< 1.
Condition 4. The noise is martinagale di↵erence:

E[�M
(t+1)

|�M
i

, i t] = �M

t

.
Condition 5. E[⌘

t

�

t

] < 1 with probability 1.
Note that this is a condition on step-size. It implicitly
says that the projection must not wander o↵ infinitely
outside the set P over the iterations.

Theorem 4.2. The distributed SGD algorithm for ten-

sor decomposition with projections, as presented in al-

gorithm 1, converges.

Proof. The primary equations being updated each
time in our iterations is equation 4.15. Rewriting it here
we have:

✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

�M

t

+ ⌘

t

�

t

+ ⌘

t

p(✓(t))

(4.17)

From theorem 4.1 we can see that the individual
blocks in a given stratum are independent of each
other’s updates and are interchangeable. We can also
observe from Algorithm 1 that every stratum out of d
strata is picked exactly once in one cycle i.e. one epoch
(outer while loop). Moreover two di↵erent cycles of
strata i.e. iterations of the while loop are identical and
independent. In other words the while loop forms an
i.i.d cycle, and thus a regenerative process. The time-
period of cycles is finite and bounded consequently that
of the regenerative process too. Besides given all the
conditions 1 to 5 as defined above, we have

(4.18)

2

4
(t+t

0

)�1X

i=0

(⌘
i

�M

i

+ ⌘

i

�

i

)

3

5 ! 0

for any arbitrary . The proof is similar to [14] and is
valid due to the fact that noise is a martingale di↵erence
sequence and ⌘

i

�M

i

and ⌘

i

�

i

are an equicontinuous

Algorithm 2: FlexiFaCT Mapper (for tensor)

Input: I, J,K, d

1: for all (i, j, k,X
i,j,k

) do
2: b

i

= b i

d I
d e
c, b

j

= b j

d J
d ec, bk = b k

dK
d ec {Get block

index}
3: subepoch =

d⇥ ((b
k

� b

i

+ d) mod d) + ((b
j

� b

i

+ d) mod d)
4: emit h(b

i

, b

j

, b

k

, subepoch), (i, j, k,X
i,j,k

)i
5: end for

sequence ([14] Theorem 2.1, part 1, chapter 5; [10]
follows a similar proof up to this point). We can now
use this to analyze the updated with a projected loss.
We find that equation 4.15 has the same set of stable
points as

(4.19) ✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

p(✓(t))

Now we show that equation 4.19 converges.
Through few algebraic manipulations it can be veri-
fied that the projection functions p(·) we have, `1 soft
threshold and non-negativity constraint project, are lip-
schitz continuous. Following the arguments of [14] (the-
orem 2.1, part 2) and with the assumption that updates
✓

(t) are bounded (follow from the conditions 1 to 5 as-
sumed earlier), equation 4.19 converges to a set of sta-
tionary points. ⇤

5 MapReduce Implementation of FlexiFaCT

Along with our theoretical analysis, we implemented our
algorithm within the MapReduce framework [9]. To
do this we used the open source Hadoop [1] version
of MapReduce. The challenge is to turn the factoriza-
tion problem into map() and reduce() functions, that
Hadoop is designed to handle.

In our implementation we pass the data ma-
trix or tensor as input to the mappers in the form
(i, j, k,X

i,j,k

). We also store our current parameters
✓

(s), which could include U, V, W, and A on the
Hadoop File System (HDFS).

FlexiFaCT Mapper: Our Mapper function, is
shown in Algorithm 2. It splits the data into the
appropriate blocks and determines the order they should
be processed in within each reducer. We also overload
the default Hadoop partitioner, which typically just
partitions on uniqueKey values, and now partition only
on b

i

so that each reducer represents a unique set of i
in I or a unique set of rows in U. We additionally
override the default Comparator, allowing us to sort
our (Key,Value) pairs within each reducer by the
subepoch term calculated in the Mapper. We see here
while the Mapper is quite simple, the calculation of the

We show

where L

si
x

(✓(t)) is the loss function at stratum s

i

at a point x in iteration t given parameter value in
previous iteration ✓

(t) . rL

0(✓(t)) is the exact gradient
in iteration t given previous parameter value ✓

(t). And

(4.16) �M

t

= rL

si
x

(✓(t))�rL

0(✓(t))� �

t

where �

t

is the “error” before projection i.e. the error
by which the update is outside P.

To prove the convergence of the method we define
the following conditions, similar to the ones defined
in [14, 10]:

Condition 1. rL

0(✓) is continuous.
Condition 2. rL

0(✓(t)) is bounded in second
moment: E[(rL

0(✓(t)))2] < 1 for all ✓.
Condition 3. The squared sum of the step sizes ⌘

t

is bounded i.e.
P

t

⌘

2

t

< 1.
Condition 4. The noise is martinagale di↵erence:

E[�M
(t+1)

|�M
i

, i t] = �M

t

.
Condition 5. E[⌘

t

�

t

] < 1 with probability 1.
Note that this is a condition on step-size. It implicitly
says that the projection must not wander o↵ infinitely
outside the set P over the iterations.

Theorem 4.2. The distributed SGD algorithm for ten-

sor decomposition with projections, as presented in al-

gorithm 1, converges.

Proof. The primary equations being updated each
time in our iterations is equation 4.15. Rewriting it here
we have:

✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

�M

t

+ ⌘

t

�

t

+ ⌘

t

p(✓(t))

(4.17)

From theorem 4.1 we can see that the individual
blocks in a given stratum are independent of each
other’s updates and are interchangeable. We can also
observe from Algorithm 1 that every stratum out of d
strata is picked exactly once in one cycle i.e. one epoch
(outer while loop). Moreover two di↵erent cycles of
strata i.e. iterations of the while loop are identical and
independent. In other words the while loop forms an
i.i.d cycle, and thus a regenerative process. The time-
period of cycles is finite and bounded consequently that
of the regenerative process too. Besides given all the
conditions 1 to 5 as defined above, we have

(4.18)

2

4
(t+t

0

)�1X

i=0

(⌘
i

�M

i

+ ⌘

i

�

i

)

3

5 ! 0

for any arbitrary . The proof is similar to [14] and is
valid due to the fact that noise is a martingale di↵erence
sequence and ⌘

i

�M

i

and ⌘

i

�

i

are an equicontinuous

Algorithm 2: FlexiFaCT Mapper (for tensor)

Input: I, J,K, d

1: for all (i, j, k,X
i,j,k

) do
2: b

i

= b i

d I
d e
c, b

j

= b j

d J
d ec, bk = b k

dK
d ec {Get block

index}
3: subepoch =

d⇥ ((b
k

� b

i

+ d) mod d) + ((b
j

� b

i

+ d) mod d)
4: emit h(b

i

, b

j

, b

k

, subepoch), (i, j, k,X
i,j,k

)i
5: end for

sequence ([14] Theorem 2.1, part 1, chapter 5; [10]
follows a similar proof up to this point). We can now
use this to analyze the updated with a projected loss.
We find that equation 4.15 has the same set of stable
points as

(4.19) ✓

t+1 = ✓

(t) + ⌘

t

rL

0(✓(t)) + ⌘

t

p(✓(t))

Now we show that equation 4.19 converges.
Through few algebraic manipulations it can be veri-
fied that the projection functions p(·) we have, `1 soft
threshold and non-negativity constraint project, are lip-
schitz continuous. Following the arguments of [14] (the-
orem 2.1, part 2) and with the assumption that updates
✓

(t) are bounded (follow from the conditions 1 to 5 as-
sumed earlier), equation 4.19 converges to a set of sta-
tionary points. ⇤

5 MapReduce Implementation of FlexiFaCT

Along with our theoretical analysis, we implemented our
algorithm within the MapReduce framework [9]. To
do this we used the open source Hadoop [1] version
of MapReduce. The challenge is to turn the factoriza-
tion problem into map() and reduce() functions, that
Hadoop is designed to handle.

In our implementation we pass the data ma-
trix or tensor as input to the mappers in the form
(i, j, k,X

i,j,k

). We also store our current parameters
✓

(s), which could include U, V, W, and A on the
Hadoop File System (HDFS).

FlexiFaCT Mapper: Our Mapper function, is
shown in Algorithm 2. It splits the data into the
appropriate blocks and determines the order they should
be processed in within each reducer. We also overload
the default Hadoop partitioner, which typically just
partitions on uniqueKey values, and now partition only
on b

i

so that each reducer represents a unique set of i
in I or a unique set of rows in U. We additionally
override the default Comparator, allowing us to sort
our (Key,Value) pairs within each reducer by the
subepoch term calculated in the Mapper. We see here
while the Mapper is quite simple, the calculation of the

Therefore, SGD and GD have the same stable points. From this it is clear SGD, like GD, converges.

Projection

