FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop

Alex Beutel, Abhimanu Kumar, Evangelos Papalexakis, Partha Pratim Talukdar, Christos Faloutsos, Eric P. Xing
{abeutel,abhimank,epapalex,ppt,christos,epxing } (@cs.cmu.edu

»

MOTIVATION

Factoring your data into its component pieces can be insightful for data mining,
and useful for prediction. We give a common motivational example below:

Coupled Matrix-Tensor Factorization

Time

Movies

Movie Features

Users

X=UoVoW
Y =UA"

We consider the Netflix challenge, where we would like to find latent
relations between users and movies for predicting user preferences.

In the real world we have much more data. The Netflix dataset includes
when the review was given, allowing us to formulate our data as a tensor
and perform a tensor factorization.

We also can easily find who directed the movie, what genre 1s the movie,
what actors are 1n 1t, how much did 1t cost, etc. We can incorporate all of
this information through a coupled factorization.

OUR CONTRIBUTIONS

1. Versatility: Plain matrix factorization, tensor factorization, coupled
decompositions. Also include sparsity, non-negativity, etc.
[1], [3] are special cases.

2. Scalability: Scales 1n input size and number of model parameters.

3. Proof of convergence: Including under projections.

4. Usability and Reproducibility: Runs on stock Hadoop, as opposed to
other recent methods [1]. We also open-source our code.

FLEXIFACT DSGD [1] PSGD [2] Matlab GigaTensor [3]
Data/Model
Matrix
Tensor
Coupled Tensor/Matrix
Obj. Function
Frobenius norm
Frobenius norm + ¢; penalty
Non-negativity constraints
Handles missing data
Scalability
in number of non-zeros
in data dimensions
in decomposition rank
Proof of convergence
Matrix Factorization
Tensor/Coupled Factorization
Projections (¢1 & non-negativity)

v ~ v
v v
v

%

.
ENRNENEN

%

.
<A

SSEENERENE N NN

l
%

v
~ v

NN NN N N N N N ENENEN
\

Y

Table 1: Feature Comparison of proposed FLEXIFACT vs state of the art. (~ represents unknown
or not directly applicable.) FLEXIFACT contains existing state of the art as special cases.

Carnegie Mellon University, School of Computer Science

Check out our code!

Reducers
Mappers v
P
P
Zl’ Zl
0T —>
\
HDEFS
g a
R 7. 1| z
L 2 2
P
0T —>
< o = 2 || Zy || Z,

FLEXIFACT PROPOSED METHODS

For SGD we must break our objective into distinct pieces.

L=|X-UoVoW|+|Y-UA"|= YL, (UV.W)+YL, (U,A)

i,j.k]
where
rank rank
Ly UV.W)=(X,,, - YU,V W,) L, U.A)=(,,-YU,A,)
r=1 r=1
Approach:

We divide our Ly, (U, V) and Ly ; ,,(U,A,B) into blocks Z, that are independent and
interchangeable. We perform SGD on each block independently, and certain groups of blocks,
called a stratum, can be run 1n parallel. We run each stratum once (called a subepoch, together a

full epoch).

Stratification Rule:
The key property for independence, which we will prove later, 1s that for (i,j,k) in Z, and
(i'j,k’) n Z,. we must have i#i’ jZ#j and k#k’. We give examples of such divisions below.

Because of the tensor, we show three of the nine necessary strata.

Convergence with Projections:

Local Projections: Can add sparsity, non-negativity, or even simplex constraints in local updates.

Distributed Projections: Can also have simplex constraints across blocks, 1.e. simplex down
the columns of U. ..
Projection

Rough Proof Sketch: (sce paper for full details) ¥
SGD Update can be written as: 9t+1 = g(t) ntVLO(é’(t)) + 0 My + 1By + mp(g(t))

We show | "(tHto)-! _ i
; (m6M; +n:8)| —0 EE) pgt+1 _ g(t) | 7. VL2 (0 4 np(6W)

Therefore, SGD and GD have the same stable points. From this 1t 1s clear SGD, like GD, converges.

Building on Stock Hadoop:

High Level: Reducers perform most computation.
Reducers store model parameters in memory and pass
them to other reducers between subepochs using HDEFS.

EXPERIMENTAL RESULTS

We run experiments on synthetic data, generated by recursive Kronecker products.
We compare against PSGD [2] and Gigatensor [3].

Scalability
12000 1 FlexiFaCT
Gigatensor -
10000 = x J PSGD @
v Scales well for rank 2 0o | FlexiFaCT Coupled
(number of parameters) 2
€ 6000 -
D
. £ 4000 - PSGD runs out of memory
Scales to over 4 Billion for R >= 100
2000
Parameters * /
0 8- | | ‘ ‘ |
200 400 600 800 1000
Rank of Factorization
1600 | ‘
............ X
1400 I
BTV R | |
€ ool / v Scales well 1in data size
c FlexiFaCT .
£ 800/ Gigatensor —— (number of observations)
Y X FlexiFaCT Coupled
£ 600 |-
= 400"
200 -
0

25M 50M 75M 100M
Number of Observations (size of data)

2500 -k
. . . 2000
v' Scales well in dimensionof 3 | 7
2 1500 FlexiFaCT
the tensor £ o Gigatensor -
© 1000 | FlexiFaCT Coupled
=
° ° ° |: :*'
Fits over 2 Billion Parameters 50015
O 0 1 x x x x x x x J
1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Convergence Dimension of Tensor (in millions)
045 1 FlexiFaCT
04 | PSGD --p¢e
035 | v' Converges to high accuracy
LL]
B 03 results
o '"""""""'"*---x----x---x----x-...x....x
0.25 |
0.2
0.15

0 400 800 1200 1600 2000
Time (seconds)

References

[1] Rainer Gemulla, Erik Nyjkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD " 11

[2] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradi- ent descent. In
NIPS 2010.

[3] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries. In KDD’ 12

