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ABSTRACT
When building a recommender system, how can we ensure
that all items are modeled well? Classically, recommender
systems are built, optimized, and tuned to improve a global
prediction objective, such as root mean squared error. How-
ever, as we demonstrate, these recommender systems of-
ten leave many items badly-modeled and thus under-served.
Further, we give both empirical and theoretical evidence
that no single matrix factorization, under current state-of-
the-art methods, gives optimal results for each item.

As a result, we ask: how can we learn additional mod-
els to improve the recommendation quality for a specified
subset of items? We offer a new technique called focused
learning, based on hyperparameter optimization and a cus-
tomized matrix factorization objective. Applying focused
learning on top of weighted matrix factorization, factoriza-
tion machines, and LLORMA, we demonstrate prediction
accuracy improvements on multiple datasets. For instance,
on MovieLens we achieve as much as a 17% improvement in
prediction accuracy for niche movies, cold-start items, and
even the most badly-modeled items in the original model.
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1. INTRODUCTION
How can we predict what movies a user will like? Or to

which users an app would be appealing? How can we ensure
that all movies or apps have a good opportunity to be sur-
faced? Recommender systems have become an integral part
of our everyday lives, from Netflix recommending movies to
Yelp suggesting restaurants to Google Play offering music
and apps. While these uses of recommender systems have
clearly been successful, little research has focused on ensur-
ing that all items in these recommender systems are modeled
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Figure 1: Focused learning improves MovieLens pre-
dictions for under-served categories of movies, in-
cluding (1) niche genres, (2) items for which we
have few observations, and (3) even the most badly-
modeled items from our original model.

well. For these systems to be continually trusted, it is cru-
cial that we understand where they fail and how to improve
recommendation quality for all items.

Concretely, much of the recent development in recom-
mender systems research has been based on matrix factor-
ization (MF) [17, 19, 32], where we use a database of user
ratings of items to learn a latent bilinear model for predict-
ing unobserved ratings. Following the Netflix Prize, these
models generally aim to improve Root Mean Squared Error
(RMSE) over a random holdout of ratings. While there are
many advantages to such an approach, focusing on the aver-
age accuracy metrics, such as RMSE, leaves many items ill-
served. In fact, as we will demonstrate, common properties
of real-world data sets encourage a skewed recommendation
policy where some items are modeled far worse than others.

Given this issue with classic factorization models, how can
we learn a model, just using ratings data, that is focused
on improving recommendation accuracy for badly-modeled
items, or any subset of items? How can we use all observed
ratings to improve the predictions of a subset? We call this
the focused learning problem.

This problem is related to multiple previous lines of rec-
ommendation research. Research on the cold-start prob-
lem attempts to improve recommendation accuracy for items
with few observed ratings, but often relies on side informa-
tion, e.g., context [34] and review text [11], or probes users
for more data [3, 2]. In our approach, we make use of given
rating data only. Also related is research in transfer learn-



Focused LCE Anava et al. ExcUseMe Park et al. Yin et al. CD-CCA CDTF
Learning [33] [3] [2] [27] [39] [31] [16]

Doesn’t Require Side Information X × X X X X X X
Doesn’t Require User Interaction X X × × X X X X
Works on top of other CF methods X × × × × × × ×
Arbitrary focus groups X × × × × × × ×

– Long-tail X X X X X X × ×
– Sub-domain (e.g., genre) X × × × × × X X
– “Outliers” X × × × × × × ×

Table 1: Comparison with related work.

ing and cross-domain recommendation, which often designs
models that include a transfer function between domains
[31, 16]. Rather, we frame the problem as a hyperparameter
optimization challenge: we focus on finding hyperparam-
eters for our model that offer the best performance for a
pre-specified subset of items. This allows our algorithm to
continue to work with new, state-of-the-art recommendation
models as they are developed.

Through this simple approach, we significantly improve
recommendation accuracy for multiple challenging groups,
including (A) niche genres, (B) items for which we have few
observations, and (C) even the most badly-modeled items
from the original model (items typically thought of as anoma-
lous or outliers that are ignored). In particular, we achieve
a greater than 17% improvement on items for which we have
few ratings, as seen in Figure 1.

In this paper we offer the following contributions:

• Problem formulation: We define the focused learn-
ing problem, giving empirical and theoretical evidence
that a single factorization, under current state-of-the-
art methods, will under-serve some items and users.
• Algorithm: We offer a novel algorithm for focused

learning that can work with multiple state-of-the-art
recommender systems.
• Real-world experiments: We give empirical evi-

dence, across multiple datasets and recommender mod-
els, that our focused learning algorithm improves pre-
diction accuracy for a variety of focused items.

2. RELATED WORK
Our research, while providing a new perspective, is related

to many other areas of data mining and machine learning.
An overview of how the most closely related work relates to
our research can be seen in Table 1.

Recommender systems: A plethora of research has fo-
cused on predicting preferences based on explicit feedback,
e.g., user ratings of items, or implicit feedback, user inter-
actions with items. Spurred by the Netflix Prize, much
work was devoted to creating different factorization mod-
els that better fit ratings data [17, 18, 19]. In addition to
modeling rating matrices, researchers have proposed learn-
ing preferences from more complex sets of user feedback [37,
41]. Some models combine clustering techniques with rec-
ommender systems [7, 40]. However, these changes are not
enough to overcome the challenges of optimizing a single,
global objective within one model.

Local Models & Ensembling: Recent work learns local
models [10], and in some cases ensembles local learners [6,
21]. With respect to recommendation, we show experimen-
tally in §7.1 that local models do not addresses the accuracy
skew in our data, but that we can improve the accuracy by

applying our focused learning algorithm to ensembles of lo-
cal models [21]. More broadly, much of the work on ensemble
learning has focused on backfitting [8] or functional gradient
descent [24] to build combined models based on error in the
training data. Here, we focus on building new models based
on held-out prediction errors.

Cross-Domain Recommendation: An additional line of
research has focused on transfer learning, cross-domain, and
multi-task recommendation, all slight variants related to fo-
cused learning. These methods often use side information,
such as item content [13], to improve recommendation. How-
ever, an additional line of work has used purely collaborative
filtering (CF) approaches. This models often learn a transfer
function between domains, such as with canonical correla-
tion analysis (CCA) [31] or tensor factorization [16]. Our
work differs in that it can work with many different rec-
ommender systems, including new ones such as LLORMA,
rather than being tied to a specific model structure.

Cold-Start Recommendation: One commonly studied
case where classic CF fails is in the case of “cold-start” users
or items, that is users or items for which we have very few
or no observed ratings. Most work in this area relies on
side information about the items [34, 4, 20, 33], users’ social
networks [23], multi-task learning to model review text [11,
25], or actively probing users for ratings [3, 2]. Recently,
researchers have examined the cold-start problem using just
ratings data [30, 39], but aren’t able to build on state-of-
the-art CF methods.

Another line of work has focused on recommending in the
tail. Often this aims to surface novel recommendations as
measured by coverage in tail [35], rather than accuracy as
is our focus, and often addresses the challenge again with
additional contextual data [15]. [27] takes a local model
approach, focusing on how to cluster the items in the tail.

Hyperparameter Optimization: A significant amount of
research has focused on using machine learning to optimize
the hyperparameters of other machine learning models [5],
e.g., using Bayesian learning and Gaussian processes to es-
timate model hyperparameters [9, 36]. Our method follows
this hyperparameter optimization perspective but does not
directly implement these algorithms. Rather, more complex
hyperparameter optimization algorithms could be directly
applied to improve the precision and speed of our method.

Handling noisy data: Our custom regularization is re-
lated, in intuition, to previous research on learning confi-
dence, such as through directly measuring confidence [12,
38], Bayesian CF [32, 7], or transforming ratings in CF [17].
We believe incorporating these more complex techniques for
measuring confidence could offer additional performance im-
provements when combined with our general focused learn-
ing system.



Symbol Definition
ri,j Rating from user i to item j from set {1 . . . R}
R Set of ratings ri,j
n,m Number of users and items, respectively

RTrain Training data; subset of R
RVal. Validation data; subset of R
RTest Test data; subset of R
I Set of items to focus on

RTest
I Set of ratings from RTest for which j ∈ I
nj Number of observed ratings for item j

RMSER Root mean squared error for observations in R
k Rank of the factorization
λ Weight for regularization
r̂i,j Model’s prediction for ri,j

Table 2: Notation used in this paper

3. PROBLEM DEFINITION
We begin with an overview of our notation and problem

setup. A complete list of symbols used in this paper can
be found in Table 2. We consider the case where we have
ratings ri,j ∈ {1 . . . R} where i ∈ {1 . . . n} indexes the users
and j ∈ {1 . . .m} indexes the items, where we say ri,j ∈ R if
we have an observed rating ri,j . For convenience we can also
view the data as a matrix R ∈ Rn×m, where most values in
the matrix are missing.

As with most recommenders, our general goal is to learn
a model from training data that predicts the missing values
in the matrix. Following convention in prediction tasks, we
split our data into training RTrain and testing RTest data,
where RTrain ∪ RTest = R and RTrain ∩ RTest = ∅. We
assume that both RTrain and RTest come from the same
distribution, i.e., from a random split of R.

We will typically evaluate the quality of our model and its
prediction based on its test RMSE:

RMSERTest =

√√√√ 1

|RTest|
∑

ri,j∈RTest

(ri,j − r̂i,j)2 (1)

Here r̂i,j is the model’s prediction for ri,j .

Focused Learning Problem.
In focused learning, we want to have high prediction ac-

curacy on a subset of the data. Given a set of items I, we
denote by RI the set of observations from items in I; pre-
cisely RI = {ri,j |ri,j ∈ R ∧ j ∈ I}. With this notation, we
can precisely specify our problem:

Problem Definition 1 (Focused Learning).
Given: Data RTrain and a subset of the items to focus on I
Find: A model that has high prediction accuracy on RTest

I ,
the test data for the focus set.

We will consider prediction error to be measured by RMSE,
but the formulation could easily accommodate other metrics.

Implicit in the problem definition above is the focus set I.
For the focused learning problem we would like to be able
to take any focus set. However, in practice, there are many
ways to select the focus set, and we will analyze how different
focus selection techniques impact the quality of results.
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Figure 2: Log-log plot of the heavy-tail distribution
of observations in MovieLens.

4. DATA EXPLORATION
While recommender systems are pervasive, they often treat

the data as generic matrices, rather than accounting for
many of the common biases in such data.

Heavy-Tail Distribution of Observations.
One of the most common properties throughout the web

is heavy-tail distributions [14, 1, 26]. This pattern shows up
in ratings data where most movies receive few ratings and
a few popular movies receive many ratings; similarly, most
users give few ratings and a few users give many ratings [27].
In Figure 2, we observe this distribution in MovieLens.

This pattern has significant implications: First, because
most objectives optimize the average error across all observa-
tions, items with more observed ratings are considered more
important than items with fewer observed ratings, and as
a result, the allocation of model capacity is biased toward
popular items. Second, because we want to have low RMSE
for all observations in the test set, the heavy-tail distribution
of test data biases the model selection.

Skewed Predictions.
For the reasons described above, the model with the best

average predictive accuracy will leave meaningful subsets of
items modeled significantly worse than other subsets. To
demonstrate this, we calculate the per-user and per-item
prediction error, RMSERTest

j
. In Figure 3, we plot the num-

ber of users and items with each MSE (size step of 0.1). We
observe a long tail of users and items with low prediction
accuracy. In addition, this is not just based on degree; even
for users or items with many observations, there is a long tail
of prediction error. Prediction skew is particularly problem-
atic because it means that these users and items will have a
significantly worse experience under these models.

In addition, we find that some genres of movies receive
significantly worse performance. As can be seen in Figure
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Figure 3: Many users and movies are badly-
modeled.

4(a), IMAX movies and Musicals on MovieLens are mod-
eled much worse than Film-Noir movies. Perhaps surpris-
ingly, in Figure 4(b) we see that this pattern is not just an
artifact of data sparsity, because Musicals actually have a
relatively high number of observations per movie, but still
have worse prediction accuracy compared to other genres.
Having some genres badly-modeled may not be terrible, but
we can imagine a much more problematic situation—If we
were predicting users’ preferences for apps, and apps for
some language/country had significantly worse performance
than other languages/countries, then the recommender sys-
tem would offer worse performance to entire populations of
people.

Theoretical Justification.
We can also understand the need for focused learning from

a theoretical perspective. We have a modelM with param-
eters θ trying to fit data R under loss LR(Mθ), and we
assume our loss function is an average over instances in R:

arg min
θ
LR(Mθ) = arg min

θ

1

|R|
∑

(x,y)∈R

L (y,Mθ(x)) (2)

where L : R × R → R≥0 is the per-instance loss, and if

L(y,Mθ(x)) > 0 then ∂L(y,Mθ(x))
∂θ

6= 0.
We consider θ∗ to be the parameters for the global optimal

solution to eq. (2). We assume the optimal model has non-
zero loss, i.e., LR(Mθ∗) > 0.

Theorem 1 (Global optimal not locally optimal). For dataset
R and loss function LR(Mθ) with optimal parameters θ∗

and LR(Mθ∗) > 0; there exists R′ ⊂ R such that θ∗ is not
the optimal solution to LR′(Mθ).

Proof. Because θ∗ is the global optimal, we know

∂LR(Mθ∗)

∂θ
=

∑
(x,y)∈R

∂L(y,Mθ∗(x))

∂θ
= 0.

Because LR(Mθ∗) > 0, there exists p = (x̂, ŷ) ∈ R such
that L(ŷ,Mθ∗(x̂)) > 0. From this, we find

∂LR\p(Mθ∗)

∂θ
=

∑
(x,y)∈R

∂L(y,Mθ∗(x))

∂θ
− ∂L(ŷ,Mθ∗(x̂))

∂θ
6= 0

Therefore, θ∗ is not optimal for R′ = R \ p. �

Therefore, the globally optimal model is typically not the
best model for each part of the data. Rather, learning mul-
tiple models, with each model optimized to improve predic-
tion quality for different subsets of data, should yield better
results than relying on the global optimum.

5. OUR METHOD
We now describe our focused learning algorithm. For clar-

ity our description uses the language and notation of clas-
sic MF, but we will demonstrate in §6.4 and §6.5 that the
method can be easily applied to other CF models:

arg min
U,V

∑
ri,j∈RTrain

wj(ri,j−〈ui, vj〉)2 + λ(‖U‖22 + ‖V ‖22) (3)

Here U ∈ Rn×k and V ∈ Rm×k, wj weights column j, and
λ weight the regularization. In some cases, we will separate
the regularization into λu and λv. We consider wj , k, λu
and λv all as hyperparameters that can be tuned.

Given U and V we can calculate the RMSE over RTest

by eq. (1) where r̂i,j = 〈ui, vj〉. We use the notation
ARTrain,RTest(k, λu, λv, ~w) to denote an algorithm that learns

U and V from RTrain and outputs RMSERTest .

5.1 Focused Hyperparameter Optimization
To solve the focused learning problem, we formulate it

as a hyperparameter optimization challenge. With a slight
abuse of notation, for hyperparameter optimization we split
our training data into RTrain and RVal., such that we use
RTrain to learn our model and RVal. to check how well our
model is performing before officially testing on RTest.

Hyperparameter optimization typically optimizes:

min
k,λu,λv, ~w

ARTrain,RVal.(k, λu, λv, ~w) (4)

The goal of this optimization is that if the accuracy on RVal.

improves through changing k, λu, λv and ~w, then the accu-
racy on RTest should improve too.

For focused learning, our objective is to improve the pre-
diction accuracy on RTest

I , for a predefined set of items I.
Therefore, we change our hyperparameter optimization to:

min
k,λu,λv, ~w

ARTrain,RVal.
I

(k, λu, λv, ~w) (5)

While it is difficult to prioritize RTrain
I in eq. (3), it is clear

that we can optimize our hyperparameters for RVal.
I with

the goal of improving the accuracy for RTest
I .

We will demonstrate that a simple grid search yields im-
provements in prediction accuracy for our focus sets I. Of
course, one could also apply research on hyperparameter op-
timization [9, 5]. In grid search, each run is independent and
thus we can trivially parallelize our learning over different
hyperparameter settings and different focus sets I.
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Figure 4: In a standard model, we observe that (a) some genres are modeled significantly better than others
for the MovieLens data, and (b) these patterns do not just follow number of observations (degree).

5.2 Focused Learning
The above approach already offers a framework for fo-

cused learning, and as we will see, improves model accuracy.
However, we find that by slightly modifying our underly-
ing objective, we obtain hyperparameters more useful for
focused learning. We allow for different regularization of
items that are our focus and items that are not our focus:

arg min
U,V

∑
ri,j∈RTrain

wj(ri,j − 〈ui, vj〉)2 + λu‖U‖22

+ λfocus

∑
j∈I

‖vj‖22 + λunfocus

∑
j 6∈I

‖vj‖22
(6)

We denote this algorithm by A′RTrain,RVal.,I . Thus, our new
hyperparameter optimization is:

min
k,λu,λfocus,λunfocus

A′RTrain,RVal.
I ,I(k, λu, λfocus, λunfocus) (7)

The intuition behind this new objective is that the focus
set may need a different regularization than the unfocused
set, since regularization controls the degree in which the
model generalizes. The advantage of this formulation is that
our parameterization is customized to the focus set, and as
we will see this single extra parameter gives an additional
significant gain in prediction accuracy, along with interesting
insights into the role of regularization in MF.

6. EXPERIMENTS
We now demonstrate the success of our approach through

a variety of experiments on real-world data. In testing fo-
cused learning, we apply it to weighted alternating least
squares (ALS) MF [17], factorization machines [28] and LLORMA
[21]. We primarily test our method on the MovieLens data
set [29], where there are over 10 million ratings from 71567
users for 10681 movies. In this data set, all users have given
at least 20 ratings. We split the ratings into training, vali-
dation, and test sets using a random 80%-10%-10% split.

Global Baseline Model. For the global baseline model
from eq. (3), all hyperparameters were first hand-tuned to
give optimal global results on the holdout data, obtaining
regularization λu = λv = 30 and rank k = 35. The column
weights wj are tuned to be proportional to 1

(nj+1)0.3
, where

nj is the number of observations in column j.
Focusing Models. Our goal is to improve and report

the test RMSE for focus sets. For most of our experiments
we focus the hyperparameter search on λfocus and λunfocus.

For both we perform a grid search over λfocus, λunfocus ∈
{3, 15, 30, 60, 150, 300}. When testing LLORMA, we also
search over rank k and the number of local models.

We use three different methods for creating focus sets I.
We primarily compare the results of focused hyperparameter
search from eq. (5) and focused learning in eq. (7), both
learned using weighted ALS [17], against the test RMSE
for the focus set from the globally optimal model. We test
focused learning with LibFM in §6.4 and LLORMA in §6.5;
in §7.1 we compare to intuitive but less successful baselines.

6.1 Focusing on Cold-Start Items
Because one of the motivating observations is the heavy-

tail distribution of ratings, we begin with trying to improve
the prediction accuracy for items with few ratings. To test
this, we group movies into deciles, i.e., 10-percentile buckets,
based on each movie’s number of ratings (degree) nj , i.e., the
first group contains all movies with nj ∈ [1, 11), our second
contains all movies with nj ∈ [11, 26), etc.

As we see in Table 3 and Figure 5, we achieve large ac-
curacy improvements with degree-based focus selection. For
the items with the fewest observed ratings, we are able to
improve prediction accuracy by over 13% and for the sec-
ond group we achieve an improvement of over 16%. This is
particularly notable because we are not using any additional
data or context, as is common in research on improving pre-
diction quality for cold-start items.

Furthermore, Figure 5 shows how focused learning achieves
better performance than focused hyperparameter search alone.
This demonstrates the importance of not just finding the
right hyperparameters, but also giving the model the neces-
sary flexibility. We will further explore the role of regular-
ization in §7.2.

6.2 Focusing on Outliers
We next test our ability to improve the prediction qual-

ity for items that were originally modeled badly. Typically,
these items would be considered outliers or too noisy because
they do not conform to the model. However, we demonstrate
that we are able to create models that greatly improve pre-
diction quality for these items.

To create our focus sets we take our global optimal model
and get the validation error RMSERVal.

j
for each item j.

We then group items into deciles based on their validation
RMSE.



Focused Hyperparameter Search Focused Learning
Degree Percentile Original Optimal Percent Optimal Optimal Percent Optimal Optimal
Range Range RMSERTest RMSERTest Improved λv RMSERTest Improved λfocus λunfocus

[1, 11) 0%–10% 1.229433 1.1513 6.3572% 3 1.099444 10.5731% 3 30
[11, 26) 10%–20% 1.355938 1.2633 6.8348% 3 1.120485 17.3646% 3 30
[26, 45) 20%–30% 1.254085 1.1713 6.6016% 3 1.078881 13.9707% 3 60
[45, 78) 30%–40% 1.127054 1.0529 6.5804% 3 0.976097 13.3939% 3 30
[78, 135) 40%–50% 1.053422 1.0044 4.6507% 3 0.982389 6.7431% 15 150
[135, 233) 50%–60% 0.970897 0.9460 2.5622% 15 0.918135 5.4344% 15 60
[233, 444) 60%–70% 0.921469 0.9062 1.6603% 15 0.888497 3.5782% 15 60
[444, 926) 70%–80% 0.885365 0.8786 0.7647% 15 0.870866 1.6376% 15 60
[926, 2388) 80%–90% 0.846424 0.8464 0% 30 0.842873 0.4195% 15 60
[2388,∞) 90%–100% 0.800346 0.8003 0% 30 0.799343 0.1253% 30 60

Table 3: Focusing on Cold-Start Items: Improvements in test RMSE from focused learning on items with
fewest observations in MovieLens.

Focused Hyperparameter Search Focused Learning
Per-Movie Percentile Original Optimal Percent Optimal Optimal Percent Optimal Optimal
RMSERVal. Range RMSERTest RMSERTest Improved λv RMSERTest Improved λfocus λunfocus

[1.37,∞) 0%–10% 1.1804 1.1475 2.7835% 3 1.0696 9.3903% 3 150
[1.13, 1.37) 10%–20% 1.0739 1.0733 0.0579% 15 1.0405 3.1095% 15 150
[1.01, 1.13) 20%–30% 1.0014 1.0014 0% 30 0.9970 0.4429% 30 150
[0.93, 1.01) 30%–40% 0.9367 0.9367 0% 30 0.9378 -0.1218% 30 60
[0.87, 0.93) 40%–50% 0.8850 0.8850 0% 30 0.8850 0% 30 30
[0.83, 0.87) 50%–60% 0.8450 0.8450 0% 30 0.8450 0% 30 30
[0.78, 0.83) 60%–70% 0.8063 0.8063 0% 30 0.8063 0% 30 30
[0.72, 0.78) 70%–80% 0.7605 0.7605 0% 30 0.7594 0.1402% 30 60
[0.62, 0.72) 80%–90% 0.7142 0.7132 0.1400% 15 0.7101 0.5634% 30 60
[0, 0.62) 90%–100% 0.7947 0.7802 1.8279% 15 0.7688 3.2601% 15 30

Table 4: Better modeling of Outliers: Focused learning improves prediction error (test RMSE) for the worst
modeled movies in MovieLens.

Focused Hyperparameter Search Focused Learning
Original Optimal Percent Optimal Optimal Percent Optimal Optimal

Genre RMSERTest RMSERTest Improved λv RMSERTest Improved λfocus λunfocus

Action 0.7988 0.7988 0% 30 0.7959 0.3643% 30 60
Adventure 0.7926 0.7926 0% 30 0.7905 0.2643% 30 60
Animation 0.8048 0.8048 0% 30 0.7966 1.0110% 30 150
Comedy 0.8345 0.8345 0% 30 0.8340 0.0650% 30 60
Children 0.8110 0.8110 0% 30 0.8054 0.6984% 30 150
Crime 0.7974 0.7974 0% 30 0.7961 0.1639% 30 60
Documentary 0.9133 0.9060 0.7922% 15 0.8692 4.8238% 15 150
Drama 0.8195 0.8195 0% 30 0.8187 0.0952% 30 60
Fantasy 0.8177 0.8177 0% 30 0.8165 0.1422% 30 60
Film-Noir 0.7709 0.7702 0.08821% 15 0.7665 0.5727% 15 150
Horror 0.8794 0.8858 -0.7270% 15 0.8771 0.2582% 30 60
IMAX 0.9084 0.9013 0.7866% 15 0.8865 2.4165% 15 60
Musical 0.8493 0.8493 0% 30 0.8452 0.4937% 30 150
Mystery 0.7921 0.7921 0% 30 0.7921 0% 30 30
Romance 0.8268 0.8268 0% 30 0.8268 0% 30 30
Sci-Fi 0.8208 0.8208 0% 30 0.8191 0.2136% 30 60
Thriller 0.7988 0.7988 0% 30 0.7979 0.1198% 30 60
War 0.8098 0.8098 0% 30 0.8083 0.1818% 30 150
Western 0.8094 0.8094 0% 30 0.8014 0.9934% 15 150

Table 5: Focusing with Side Information: Improvements in test RMSE from focused learning on each genre
in MovieLens.
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Figure 5: Focusing on Cold-Start Items: Improve-
ment from focused learning on cold-start items in
MovieLens.
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Figure 6: We observe especially high variance in
prediction errors for movies with fewer observations.

As can be seen in Table 4, we are able to improve predic-
tion quality for the previously badly-modeled movies. We
improve the RMSE for the movies in the first group
(RMSERVal.

j
≥ 1.37) by nearly 10%.

Surprisingly, we also observe a 3.26% improvement in test
RMSE for the previously best modeled movies—those with
RMSERVal.

j
< 0.62. Upon further investigation we find that

at either extreme, movies with very high or very low RMSE,
are mostly movies with fewer ratings in our hold-out set.
This is more clearly visualized in Figure 6, which shows that
movies with low degree have high variance in prediction er-
ror.1 Because our focused learning approach is based on its
regularization, it is most apt to handle data sparsity chal-
lenges.

6.3 Focusing with Side Information
In many real-world applications, we have additional in-

formation about the items on which we are predicting. Us-
ing this side information as our focus selection criteria is
a natural choice. Here, we make use of the genre for each
movie. For example, we might want to specifically improve
the predictions for Documentaries due to product direction
concerns. For each genre we consider all movies that are in
that genre and use the typical focused learning algorithm.

1This also helps explain why the original test RMSE for
the 90%-100% decile group (0.7947) is higher than for next
two “worse”-modeled decile groups (0.7142 and 0.7605).
That is, grouping is performed based on validation RMSE
RMSERVal. , but we measure the test RMSE. When there are
sparser observations for a focus set, the difference between
validation and test RMSEs is higher.
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Figure 7: Analysis of the improvement from focusing
on genres in MovieLens.

In MovieLens, because each movie can be part of more than
one genre, a movie may be in more than one focus set.

As we see in Table 5, we observe improvements in the pre-
diction error for all genres, with the largest improvements
for IMAX films and Documentaries. Beyond the raw im-
provements, we observe a few interesting patterns. For all
genres, we find that the optimal regularization for the focus
set (λfocus) is low while the optimal regularization for the
rest of the movies (λunfocus) is high.

We also plot, in Figures 7, the improvement in perfor-
mance as a function of the total number of observations in
each movie as well as the data sparsity in each genre. Unsur-
prisingly, documentaries and IMAX movies, the two genres
with the largest improvement, have the fewest observations
and the most sparse data. This makes sense because genres
with few ratings have the least influence in the selection of
a global optimal regularization parameter. In case of data
sparsity, we know that regularization is important to set
correctly. However, beyond those two genres, we observe
that improvements in accuracy are largely independent of
data size and sparsity. Therefore, while our method excels
at helping cold-start movies, as we saw above, it also helps
large genres with popular movies.

6.4 Focusing in more complex models: LibFM
To demonstrate that focused learning will continue to be

useful under more complex models, we test our approach on
multiple model structures to improve predictions for Movie-
Lens split by item degree (as in §6.1). We build on LibFM
[28], with three increasingly complex settings.

A summary of our results with LibFM can be seen in Ta-
ble 6. Each test consists of a new variation of offsets for
prediction and set of hyperparameters that we tune dur-
ing focused learning. In each case we compare our model
with globally optimized hyperparameters to our model with
focused hyperparameters. Across these experiments we find
that focused learning can still offer significant improvements.



Prediction r̂i,j Regularization Focus Parameters Max. Improvement

µ+〈ui, vj〉 λµµ
2+λu‖U‖22+λv‖V ‖22 λfocus v, λunfocus v 8.9%

µ+ai+bj+〈ui, vj〉 λµµ
2+λa‖a‖22+λb‖b‖22+λu‖U‖22+λv‖V ‖22 λfocus v, λunfocus v 1.85%

µ+ai+bj+〈ui, vj〉 λµµ
2+λa‖a‖22+λb‖b‖22+λu‖U‖22+λv‖V ‖22 λfocus v, λunfocus v, λfocus b 2.25%

Table 6: Maximum improvements of focused learning under different objective functions.

When we add per-user and per-item offsets, the baseline
model is improved, covering some of the improvements previ-
ously offered by focused learning. With these more complex
models, focused learning overfits for items with the fewest
observations due to the small validation set. However, once
the validation set is larger, focused learning still improves
over even the more complex model. Last, by performing fo-
cused learning on the regularization of the item-offsets, we
gain additional improvements in prediction accuracy. This
demonstrates that even when using a more complex model,
focused learning can improve prediction accuracy and focus-
ing additional parts of your model can provide additional
improvements.

6.5 Focused Learning in LLORMA
We apply the focused hyperparameter optimization algo-

rithm of §5.1 on top of the LLORMA implementation in
PREA [22]. Here, we use as a baseline the hyperparam-
eter settings from [21], which we also verify to be opti-
mal under a global objective. We test regularization λ ∈
{0.1, 0.01, 0.001, 0.0001, 0.00001} and rank ∈ {5, 10, 20}; the
implementation automatically chooses a number of local mod-
els with the best validation accuracy for ≤ q = 50. We run
our experiments on the MovieLens 1M dataset [29], due to
speed and memory limitations of the PREA implementation.
We achieve an improvement in test accuracy of 3.7% for the
items with the 10% fewest ratings and of 1.4% for items in
the second decile. This further demonstrates that our fo-
cused learning algorithm benefits from further optimizing
other hyperparameters, and still offers significant improve-
ments, even on top of new, more complex models.

We also test our method to improve the prediction accu-
racy for users with the fewest ratings. We achieve a 0.27%
improvement for users with the 10% fewest ratings and a
0.65% improvement for users in the second decile. We be-
lieve this is smaller than the item improvements because
the dataset only includes users with ≥ 20 ratings, thus cut-
ting off much of the tail. Therefore, while the magnitude of
the improvements on these users is smaller, it still presents
strong evidence of the generalizability of the method.

6.6 Recommendation at Google
To demonstrate how well focused learning works beyond

MovieLens, we test our framework to improve a collabora-
tive filtering model at Google. The model is currently serv-
ing over one billion monthly active users in a recommender
system. Our training matrix, constructed from user engage-
ment data, has 3 million rows, 1 million columns and 79
million observed values. There is a heavy-tail distribution
of observations among both the rows and the columns, and
the rows were previously filtered so that each row contains at
least 11 observations. We use Google’s production settings
for the recommender system as the baseline and the initial
hyperparameters, with λu = λv = 15, rank k = 100, and
weights wj proportional to 1

(nj+1)0.5
. We take an 80%-10%-

10% split of the data and create focus groups by partitioning
the columns according to their degree.

As seen in Table 7, we observe that our approach offers
consistent improvements over Google’s production system,
with up to a 4% improvement in accuracy. These experi-
ments offer a strong reaffirmation of our approach.

7. WHY DOES THIS WORK?
In this section, we explore a wide variety of perspectives

to better understand why focused learning works.

7.1 Alternative Baselines
So far we have primarily compared our focused learning

algorithm to a globally-optimized model. However, our fo-
cused learning approach was not the first idea attempted.
Therefore, we now compare against other potential approaches.

Doubling the model size. By making additional fo-
cused models, we are increasing the total model size. To
demonstrate that focused learning increases model size in
a principled way, we made a model twice as large as our
globally optimal model and compared the RMSE on specific
focus sets. To be precise, we tuned our λ (jointly λu = λv)
for a global model of rank 70 and evaluated the test RMSE
for documentaries, movies with degree [1, 11), and movies
with degree [11, 26). For these three categories we observe
a test RMSE of 0.9169, 1.2359, and 1.3615, respectively. In
all three cases the RMSE from the doubly-large but globally
optimized model is worse than our original rank-35 global
model and also significantly worse than our focused learning
models. Therefore, focused learning is not improving results
merely by having a larger model, but because the additional
model size is allocated well for the focused set of items.

Training local models. Second, we test how well local
models perform on this problem. Intuitively, local models
might work well for semantically similar content. Therefore,
for a given focus set I, we only use RTrain

I when training the
model, we tune λv based on the RMSE of RVal.

I , and then
we test against RTest

I . We test this on Action, Animation,
Documentaries and Westerns genres, with test RMSE for the
four groups of 0.8473, 0.9368, 1.1133, 1.0925, respectively.
Across all four genres, the test RMSE from the local model
is worse than the RMSE from the baseline model, and much
worse than the focused learning RMSE.

7.2 Exploring Regularization
Given focused learning modifies the model regularization,

it is worthwhile to explore the resulting regularization pat-
terns. Most notably, we find that across nearly every ex-
periment, λfocus ≤ λv and λunfocus ≥ λfocus, where λv is
the globally optimal regularization. This is particularly in-
teresting when we consider groups of items for which we
observe few ratings. From one perspective, we would expect
high regularization for items with few observations to pre-
vent overfitting. From another perspective, an observation
for a less-popular item is more valuable than an observation
for a popular item, so we expect less regularization so as



Focused Hyperparameter Search Focused Learning
Degree Percentile Original Optimal Percent Optimal Optimal Percent Optimal Optimal
Range Range RMSERTest RMSERTest Improved λv RMSERTest Improved λfocus λunfocus

[1, 2] 0%–40% 1.4155 1.4113 0.30% 7.5 1.3777 2.67% 1.5 7.5
[3, 3] 40%–50% 1.5097 1.5063 0.23% 7.5 1.4818 1.85% 1.5 15
[4, 6] 50%–60% 1.5795 1.5722 0.46% 7.5 1.5308 0.46% 1.5 7.5
[7, 12] 60%–70% 1.6788 1.6785 0.02% 7.5 1.6101 4.09% 1.5 15
[13, 27) 70%–80% 1.6895 1.6841 0.32% 7.5 1.6501 2.33% 1.5 15
[28, 82] 80%–90% 1.6832 1.6829 0.01% 7.5 1.6369 2.75% 1.5 15
[83,∞) 90%–100% 2.1862 2.1662 0.91% 30 2.1553 1.41% 30 150

Table 7: Focused learning to improve Google’s recommender system.

Test RMSE for λunfocus =

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  50  100  150  200  250  300

R
M

S
E

λunfocus

RMSE in [1.37,∞)
RMSE in [1.13,1.37)

Degree in [1,11)
Degree in [11,25)

Movie Cluster 3 15 30 60 150 300
RMSERVal. ∈ [1.37,∞) 1.1475 1.1152 1.0991 1.0776 1.0696 1.0876
RMSERVal. ∈ [1.13, 1.37) 1.1103 1.0733 1.0660 1.0521 1.0405 1.0583
RMSERVal. ∈ [0.83, 0.87) 0.8733 0.8486 0.8450 0.8473 0.8541 0.8658
RMSERVal. ∈ [0, 0.62) 0.8366 0.7802 0.7688 0.7665 0.7681 0.7812
Degree ∈ [1, 11) 1.1513 1.1051 1.0994 1.0987 1.1246 1.1650
Degree ∈ [11, 25) 1.2633 1.1510 1.1205 1.1146 1.1586 1.1987
Degree ∈ [135, 233) 1.0209 0.9460 0.9275 0.9181 0.9190 0.9297
Degree ∈ [2388,∞) 0.8571 0.8464 0.8459 0.8473 0.8520 0.8613
Action 0.8188 0.8040 0.7988 0.7959 0.7974 0.8025
Documentaries 0.9624 0.9060 0.8920 0.8806 0.8692 0.8782
IMAX 0.9626 0.9013 0.8958 0.8865 0.8846 0.9077
Western 0.8313 0.8169 0.8261 0.8276 0.8014 0.8122

Figure 8: Regularization of one item has an effect on the accuracy of the rest of the model.

Focus Test RMSE
Groups λunfocus λfocus−1 λfocus−2 Focus-1 Focus-2

[1
,1

1
);

[1
1
,2

6
) 30 3 3 1.1045 1.1201

30 3 150 1.0973 1.5974
30 300 3 1.3929 1.1196
30 300 150 1.3922 1.5977

[4
5
,7

8
);

[2
3
3
,4

4
4
) 30 3 15 0.9788 0.8934

30 3 30 0.9761 0.9213
60 3 15 0.9733 0.8884
60 3 30 0.9716 0.9068

Table 8: Multiple focuses give incompatible settings.
(bold values are those selected by cross validation).

to not drown out that information. Based on the results in
Table 3, the second perspective seems to hold more often.

Second, we observe that regularization is not independent
across focused and unfocused items. That is, the regular-
ization for the parameters of item i can have a significant
impact on the prediction error for item j. In Figure 8, we
see that even when λfocus is selected according to focused
learning, changing λunfocus has a significant impact on the
test RMSE for these focused groups. In particular, we ob-
serve in each row, regardless of focus selection technique, a
generally convex curve as we increase λunfocus.

Last, we perform an additional experiment to explore if

there exists an optimal ~λ∗ vector that would give the best
results for all items. That is, should each movie have its own
regularization λj? To investigate this idea, instead of having
just one focus set, we expand our formulation slightly to
have two focus sets, each with its own regularization λfocus−1

and λfocus−2, along with λunfocus. We then search to find
the optimal hyperparameters for validation RMSE for both
focus-1 and focus-2. We find that in some cases, as seen in
two examples in Table 8, the optimal hyperparameters for

focus-1 and focus-2 are incompatible. For example, when
focus-1 is the set of movies with degree ∈ [45, 78) and focus-2
is the set of movies with degree ∈ [233, 444), then increasing
λfocus−2 from 15 to 30 consistently helps focus-1 and hurts
focus-2. This suggests that there may not be a single correct

setting of ~λ that performs optimally for all items. However,
because the change in RMSE values from this additional
regularization term is marginal, we are hesitant to draw any
strong conclusions.

8. CONCLUSION
In this paper we explored focused situations when classic

CF systems fail and how we can improve prediction quality
in these cases. We made the following contributions:

• Problem Formulation, including empirical and the-
oretical evidence that a single globally-optimal model
is not necessarily optimal for subsets of the data.
• Algorithm for focused learning with state-of-the-art

models to improve recommendations for a pre-specified
subset of items.
• Real-world experiments demonstrating the success

of focused learning.

While these contributions are successful on their own, we
believe this research opens exciting new directions for future
research on focused learning.
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