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ABSTRACT

Matrix completion and approximation are popular tools to
capture a user’s preferences for recommendation and to ap-
proximate missing data. Instead of using low-rank factoriza-
tion we take a drastically different approach, based on the
simple insight that an additive model of co-clusterings al-
lows one to approximate matrices efficiently. This allows us
to build a concise model that, per bit of model learned, sig-
nificantly beats all factorization approaches in matrix com-
pletion. Even more surprisingly, we find that summing over
small co-clusterings is more effective in modeling matrices
than classic co-clustering, which uses just one large parti-
tioning of the matrix.

Following Occam’s razor principle, the fact that our model
is more concise and yet just as accurate as more complex
models suggests that it better captures the latent preferences
and decision making processes present in the real world.
We provide an iterative minimization algorithm, a collapsed
Gibbs sampler, theoretical guarantees for matrix approxi-
mation, and excellent empirical evidence for the efficacy of
our approach. We achieve state-of-the-art results for matrix
completion on Netflix at a fraction of the model complexity.

Categories and Subject Descriptors

H.2.8 [Database Management]: Data mining; H.3.m [ In-
formation Storage and Retrieval]: Miscellaneous; 1.5.3
[Computing Methodologies]: Clustering

Keywords

Recommender Systems; Collaborative Filtering; Clustering

1. INTRODUCTION

Given users’ ratings of movies or products, how can we
model a user’s preferences for different types of items and
recommend other items that the user will like? This prob-
lem, often referred to as the Netflix problem, has generated
a flurry of research in collaborative filtering, with a variety
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Figure 1: Accuracy of ACCAMS on Netflix, com-

pared to [10] and [13]. Note that our model achieves

state of the art accuracy at a fraction of the model

size.

of proposed matrix factorization models and inference meth-
ods. Top recommendation systems have used thousands of
factors per item and per user, as was the case in the winning
submissions in the Netflix prize [10]. Recent state-of-the-art
methods have relied on learning even larger, more complex
factorization models, often taking nontrivial combinations
of multiple submodels [16, 13]. Such complex models are in-
creasingly difficult to interpret, use large amounts of mem-
ory, and are often difficult integrate into larger systems.

1.1 Linear combinations of attributes

Our approach is drastically different from previous col-
laborative filtering research. Rather than start with the
assumptions of a matrix factorization model, we make co-
clustering effective for high quality matrix completion and
approximation. Co-clustering finds a clustering of the rows
and columns of a matrix R so as to partition R into blocks
that are highly similar. It has been well studied [2, 21] but
was not previously competitive in large behavior modeling
and matrix completion problems. To achieve state of the
art results, we use an additive model of simple co-clusterings
that we call stencils, rather than building a large single co-
clustering. The result is a model that is conceptually simple,
has a small parameter space, has interpretable structure,
and still achieves the best published accuracy for matrix
completion on Netflix, as seen in Figure 1.

Using a linear combination of co-clusterings corresponds
to a rather different interpretation of user preferences and
movie properties. Matrix factorization assumes that a movie
preference is based on a weighted sum of preferences for



different genres, with the movie properties being represented
in vectorial form. Therefore, even if a movie is a comedy and
the user likes comedies, the model still also offsets by how
scary the movie is and does the user like scary movies.

Co-clustering on the other hand assumes there exists some
“correct” partitioning of movies (and users). For instance,
a user might be part of a group that likes all comedies but
does not like romantic movies. Correspondingly, all roman-
tic comedies might be split out into a separate cluster. If a
group of users likes new movies but not old ones then each
genre may be further partitioned by decade. This quickly
leads to a combinatorial explosion.

By taking a linear combination of co-clusterings we benefit
from both perspectives: by modeling the discrete nature of
attributes we can avoid the cost of high-dimensional factor-
ization models, and by adding the preferences for different
attributes we can avoid the large models necessary to cover
all combinations of attributes. Rather, through backfitting,
we create a more powerful, hierarchical representation. For
instance, a movie may be {funny, scary, sad}, it was made in
some era, it has a certain age rating, it may contain a certain
group of actors or be shot in a certain visual style. However,
if a user likes comedies but doesn’t like scary movies, it is
generally unlikely that this preference will suddenly flip de-
pending on the decade the movie was produced. Therefore,
by taking linear combinations of co-clusterings we can effi-
ciently take all of these attributes into account.

1.2 Succinct Stencils

The mathematical challenge that motivated this work is,
how can we make a succinct model of user behavior that
still provides high quality predictions? Designing a succinct
model is difficult because it requires making assumptions
and restrictions while not decreasing the model’s accuracy.
Factorization models are very flexible. In order to encode
a rank-k matrix by a factorization, we need k numbers per
row (and column) respectively. Rather, consider a stencil -
a small k x k template of a matrix and its mapping to the
row and column vectors respectively. We only need log, k
bits per row (and column) plus O(k?) floating point numbers
regardless of the size of the matrix.

Taking a linear combination of stencils we can model quite
complex matrices. This is best understood by the example
below: assume that we have two simple stencils containing
3% 2 and 2x 3 co-clusterings. Their linear combination yields
a rather nontrivial 9 x 8 matrix of rank 5. Alternatively,
classic co-clustering would require a (3-2) x (2-3) partitioning
to match this structure. When we have S stencils of size
kx k, this would require a single co-clustering of size k% x k.
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By design our model has a parameter space that is an or-
der of magnitude smaller than competing methods, requir-
ing only Slog, k bits per user and per movie and Sk? float-
ing point numbers, where k is generally quite small. While
ACCAMS is more restrictive than classic factorization, we
demonstrate that our assumptions do not increase the gen-

eralization error, achieving even better prediction accuracy
than more complex models.

Finding succinct models for binary matrices, e.g. by min-
imizing the minimum description (MDL), has been the fo-
cus of significant research and valuable results in the data
mining community [14, 11]. That said, these models are
quite different. To the best of our knowledge, ours is the
first work aimed at finding a parsimonious model for gen-
eral (real-valued) matrix completion and approximation.

1.3 Contributions

Our paper makes a number of contributions to the prob-
lem of finding sparse representations of matrices.

e Optimization algorithm: We present ACCAMS, an
iterative k-means style algorithm that minimizes the
approximation error by backfitting the residuals of pre-
vious approximations.

e Theoretical bounds: We provide linear approxima-
tion rates exploiting the geometry of rows and columns
of rating matrix.

e Bayesian model: We present a generative Bayesian
non-parametric model and devise a collapsed Gibbs
sampling algorithm, bACCAMS, for efficient inference.

e State-of-the-art results: Experiments confirm the
efficacy of our approach, offering the best published re-
sults for matrix completion on Netflix, an interpretable
hierarchy of content, and succinct matrix approxima-
tions for ratings, image, and network data.

We believe that these contributions offer a promising new
direction for behavior modeling and matrix approximation.

Outline. We begin by discussing related work from rec-
ommendation systems, non-parametric Bayesian models, co-
clustering, and minimum description length. We subsequently
introduce the simple k-means style co-clustering and its ap-
proximation properties in Section 3. Subsequently, in Sec-
tion 4.1 we define our Bayesian co-clustering model and col-
lapsed Gibbs sampler for a single stencil. In Section 4.4 we
extend our Bayesian model to multiple stencils. Section 5
reports our experimental results and we conclude with a dis-
cussion of future directions for the work.

2. RELATED WORK

Recommender Systems. Closest to our work is the re-
search on behavior modeling and recommendation. Matrix
factorization approaches, such as Koren’s SVD++ [9], have
enjoyed great success in recommender systems. Recent mod-
els such as DFC [16] and LLORMA [13] have focused on
using ensembles of factorizations to exploit local structure.

More closely related to our model are Bayesian non-parametric

approaches. For instance, [6, 5] use the Indian Buffet Pro-
cess (IBP) for recommendation. In doing so they assume
that each user (and movie) has certain preferential binary
attributes. It can be seen as an extreme case of ACCAMS
where the cluster size k = 2, while using a somewhat differ-
ent strategy to handle cluster assignment and overall simi-
larity within a cluster. Following a similar intuition as AC-
CAMS but different perspective and focus, [17] extended
the IBP to handle k > 2 for link prediction tasks on binary
graphs. Our work differs in its focus on general, real-valued
matrices, its application of co-clustering, and its significantly
simpler parameterization.



Co-clustering was incorporated into a factorization ap-
proach to recommendation in [3]. While the co-clustering
improved modeling accuracy, it did not reduce the model
complexity of the underlying factorization. Finally, [19] pro-
posed a factorization model based on a Dirichlet process over
users and columns. All these models are closely related to
the mixed-membership stochastic blockmodels of [1].

Co-clustering. The technique was originally used for un-
derstanding the clustering of rows and columns of a ma-
trix rather than for matrix approximation or completion
[8]. This formulation was well suited for biological tasks but
evolved to cover a wider variety of objectives [2]. [18] defined
a soft co-clustering objective akin to a factorization model.
Recent work has defined a Bayesian model for co-clustering
focused on matrix modeling [21]. [24] focuses on exploiting
co-clustering ensembles, but do so by finding a single con-
sensus co-clustering. As far as we know, ours is the first
work to use an additive combination of co-clusterings.

Matrix Approximation. There exists a large body of
work on matrix approximation in the theoretical computer
science community. They focus mainly on efficient low-rank
approximations, e.g. by projection or by interpolation [7, 4].
Essentially one aims to find a general low-rank approxima-
tion of the matrix, similar to recommender models.

A more parsimonious strategy is to seek interpolative de-
compositions, approximating columns of a matrix by a linear
combination of a subset of other columns [15]. Nonetheless
this requires us to store at least one, possibly more scaling
coefficients per column. Also note the focus on column inter-
polations — this can easily be extended to row and column
interpolations. To the best of our knowledge, the problem of
approximating matrices with piecewise constant block ma-
trices as we propose here is not the focus of research in TCS.

Succinct modeling. The data mining community has fo-
cused on finding succinct models of data, often directly op-
timizing the model size described by the minimum descrip-
tion length (MDL) [20]. This approach has led to valuable
results in pattern and item-set mining [23, 14] as well as
graph summarization [11]. However, these approaches typ-
ically focus on modeling databases of discrete items rather
than real-valued datasets with missing values.

3. MATRIX APPROXIMATION

We begin by defining our notation and the problem. We
will denote matrices by bold capital letters, vectors by bold
lowercase letters, and scalars by non-bold symbols. Unless
otherwise specified, subscripts on matrices (or vectors) de-
note indices into the matrix (or vector), e.g. Ry m is the
scalar in the uth row and mth column of R. Using : selects
all indices, such that R, . represents the entire uth row of
R and R.,, is the entire mth column. Superscripts, as in
T denote different matrices for different superscripts. A
full list of the symbols used can be found in Table 1.

We consider now the problem of matrix approximation:

Problem Definition 1 (Matriz Approximation)
Given: a sparse matriz R € RY*M with indicator matriz T
Find: a model M with parameters 0, such that the size of
0 is small, 0] < R, and M(0) approzimates R well:

N M
miniemizeg g Lim(Rum

u=1m=1

= M(0)u.m)® (1)

[ Symbol | Definition

N,M Number of rows (users) and columns (movies)
R Data matrix € RY** (with missing values)
I Indicator matrix € {0,1}" " for R
S Number of stencils
k:;e), k%) Number of user and movie clusters in stencil ¢
T® Matrix € R¥ **n for stencil £
c® Vector of user assignments € {1,..., k% }Y
d® Vector of movie assignments € {1, ..., kfﬁ)}M
S(T,c,d) | € RV defined by S(T,c,d)u,m = Te,.dm
ne Number of users in cluster ¢
nl " Number of users in cluster ¢, ignoring user «
Ne,q Number of observations in block (¢, d)
Ted Vector of observed ratings in block (c, d)

Table 1: Symbols used throughout this paper.

As stated above, we assume R is a sparse matrix where
there is no data for many values in the matrix. The indicator
matrix I denotes this information, where I; ; = 1 when there
is an observed value for R; ; and I; ; = 0 otherwise. Without
loss of generality we assume that our data matrix, R, has
more rows than columns, i.e. R € RM*M with N > M.

The concept of a small model in the context of behavior
modeling has typically been captured by the rank of a factor-
ization. We generalize this concept and define a small model
by the number of bits required to store it, more commonly
known as the minimum description length (MDL).

3.1 Proposed Model

A stencil assigns each user u to a user cluster ¢, each movie
to a movie cluster d, and for each (user cluster ¢, movie
cluster d) combination there is a block of ratings which are
predicted to have value T, 4. Formally:

Definition 1 (Stencil) A stencil S (T,c,d) is a matriz S €
RN>M ith the property that S (T, c, d), . = Te..a,, fora

template T € RF"**m and discrete index vectorsc € {1,... kn}"

and d € {1,..., km}M respectively.

Therefore, our goal is to find a stencil S (T,c,d) with a
small approximation error R — S (T, ¢,d) and small cost for
storing 6 = {T,c,d}.

Lemma 2 (Compression) Stencil S(T,c,d) can be stored
with N log, ky bits for row cluster assignments ¢, M log, km
bits for column cluster assignments d and 32knk., bits to
store a 32-bit floating point number for each block in T':

Bits({T, c,d}) = Nlog, kn + Mlog, km + 32knkm  (2)

Note, it is trivial to get zero approximation error by setting
kn = N and k,, = M, but this creates a very large model
(the size of the original data) that is not useful.

As mentioned above, we can efficiently improve the ap-
proximation accuracy by using multiple stencils:

N M S 2
minimize Lin | Rum = > 8 (T,c?,a)
{T®,c®,a®} Z Z ’ ( ’ ; u,m

u=1m=1

That is, we would like to find an additive model of S stencils
that minimizes the approximation error to R.



Algorithm 1 Matrix Approximation

Require: matrix R, indicator matrix I, clusters k., km,
max stencils S

1: R+~ R

2: for /=1 to S do

3t (c9, Vi) L) « CLUSTER(R, kn,I) {Rows}

4: (d9,-,) « CLUSTER([V®™]T k,,,L") {Columns}
5. forallabe{l,...k,} x{1,...kn} do

6: Tfﬁ7 < mean {Ru,m|c1(f) = a and dgﬁ) = b}

7:  end for

8: R+« R-8(TW,c?®, d?) {Backfit on residuals}

9: end for

10: return {T® c® d9}7

Algorithm 2 CLUSTER(M, k, W)

Require: matrix M € RV >Nz weights W € RN1*Nz,
number of clusters k
1: Draw k rows from M at random without replacement
and copy them to V = {v1,...,v;} € R®*>Nz2,

2: while not converged do

3: L+ 0eR"”™ andY « 0 e RN

4: for =1 to N; do

5: ci < argmin, >, Wi ;(M;; — Ve,)?

6: Y, < Y, + M, {Increment statistics}
7 Lc,,. < Lg, . + L. {Increment counts}

8: end for

9: forc=1tokdo

10: Ve, < Y../Lc,. {New cluster center}

11: end for

12: end while
13: return cluster assignments c, clusters V, counts L

Given R, it is our goal to find such stencils S(T“), c®, d(“)
with good approximation properties. Unfortunately, finding
linear combinations of co-clusterings is NP-hard. It is easy
to see this by reducing co-clustering, which is NP-hard, to
our problem by setting S = 1. We describe below two algo-
rithms to learn our stencils that offer good approximation
guarantees and work well in practice.

3.2 Algorithm

We consider a simple iterative procedure to learn stencils
to approximate our data R. Algorithm 1 gives the high
level algorithm of learning each stencil one at a time. In
learning each stencil we use the CLUSTER algorithm, similar
to k-means, as given in Algorithm 2.

Row clustering. We first perform k-means clustering of
the rows. That is, we aim to find an approximation of R that
replaces all rows by a small subset thereof. Algorithm 2 is
essentially a generalization of k-means clustering. By calling
the algorithm with M = R, k = ky, and W = 1V*M e
find that the algorithm simplifies significantly to classic k-
means. The cluster assignment in Line 5 is simply

cy, + argmin |R.,,. — Vc||§ ()
c

and L stores the number of rows in each row cluster.

Column clustering. Once we have run the clustering algo-
rithm on the rows, we now cluster the columns of previously
learned row clusters, V®°%). In this case, we need to weight

each row of V(oW (corresponding to a row cluster) by the
number of rows it represents (the number of rows in that
cluster). As a result, rather than choose a column cluster
assignment by the Euclidean distance, we use the Maha-
lanobis distance. Still, Algorithm 2 is a generalization of
this concept. We use the assignment (for Line 5):

.
d,, < argmin (V:(?T’Lw) - V;,d) D (V;(,rr?lw) - V:,d) (4)
d

where V. € RF¥»*Fm ig the matrix obtained by stacking
V.4 = v, and D would be the diagonal matrix of counts,
i.e. D is the number of rows of R in cluster c.

Missing entries. In many cases, however, R itself is incom-
plete. This is addressed quite easily by using the assignment
shown in Line 5 of Algorithm 2. Therefore, in finding a good
cluster for the row R, . we restrict ourselves to the coordi-
nates in V.. where R, exists (and also where V., has
been initialized).

For the purpose of obtaining the column clusters, we now
need to weight each coordinate in V") by how many el-
ements in R contributed to it. Correspondingly denote by
Lem = Z(u,m)eR:cu:c 1 the number of entries mapped into
coordinate ngfnw)
is obtained via

2
dm ¢« argmin'$ " L (Vf:’nw) —V. ) 5
& ; , , d (5)

. Then the assignment for column clusters

We observe that Algorithm 2 handles both row and column
clustering correctly, by calling it appropriately as shown in
Algorithm 1.

Backfitting. The outcome of running the row and column
clustering described above on R is a single stencil S(T, ¢, d)
consisting of the clusters obtained by first row and then
column clustering. It may be desirable to alternate between
row and column clustering for further refinement.

However, as noted above, additional stencils only reduce
the objective function further - convergence to a local min-
imum is assured, with the same caveat on solution quality
as in k-means clustering. Therefore, we take the residual
R =R —S(T,c,d) and use it as the starting point to learn
a new stencil. By repeatedly learning new stencils on the
residuals of the previous stencils, as shown in Algorithm 1,
we obtain an additive model of co-clusterings that minimizes
the approximation error to R.

3.3 Approximation Guarantees

A key question is how well any given matrix R can be
approximated by an appropriate stencil. For the sake of
simplicity we limit ourselves to the case where all entries
of the matrix are observed. Using covering numbers and
the spectral properties of R, we can obtain approximation
guarantees for co-clustering. Denote by ¥ = diag(o1,...0p)
the singular values of R.

Theorem 3 (Approximation Guarantees) Usingk clus-
ters for both rows and columns, the matrix R can be approz-
imated with error at most

IR-R||_ <2|R|? e (2%)

IR~ R'[, < (VN + VAD) R * e (2*)



where

JEN

1
J J
ex(X) < 6sup (i Hm) < 6ex(X)
i=1

Proor. We omit the proof of Theorem 3 due to space
constraints. The complete proof can be found at http://
arxiv.org/abs/1501.00199. [J

Note that the above is a statement of existence rather
than a constructive prescription. However, the main purpose
of the above analysis is to obtain theoretical upper bounds
on the rate of convergence. In practice, the results can be
considerably better, as we show in Section 5.

4. GENERATIVE MODEL

As many frequentist algorithms have a Bayesian counter-
part, we now devise a Bayesian counterpart to ACCAMS,
which we will refer to as bACCAMS. We begin with the sin-
gle stencil case, describing the model in Section 4.1 and a
collapsed Gibbs sampler in Section 4.2. We then extend the
model and sampler to many stencils in Section 4.4.

4.1 Co-Clustering with a Single Stencil

We begin with a simple Bayesian model of co-clustering.
This is the basic template for single-stencil inference, and
our model of additive co-clusters will use the same idea.
Our model can be broken into two parts: (1) generating
block values and (2) generating cluster assignments. We
will go through each part of the model and then the model
as a whole, as shown in Figure 2.

Block values. We begin by considering how we generate
the prediction T, 4 for a particular block, corresponding to
ratings from users in cluster ¢ to movies in cluster d. Previ-
ously, as shown in Line 6 of Algorithm 1, each block merely
took the average of the values that fell in that block. Sub-
sequently, we would use that block mean directly as the
prediction for all values in the block.

In our Bayesian model, we consider each T.4 to come
from a Gaussian distribution, centered at 0 and with vari-
ance 72. On top of this, each value in the matrix R m is
generated by a Gaussian with mean T, a,, and variance o>

(alternatively stated, with additive noise €y m ~ N(0,02)).
As such we have

TC,d ~ N(07 T2) Ru,m ~ N (Tc'undvn ) 02) (6)

Because 72 and o are not yet defined and are data depen-
dent, they too are sampled from the conjugate prior distri-
bution, specifically the Inverse Gamma distribution:

2~ 1G(Y) o® ~ 1G(1) (7)

Cluster assignments. In Algorithm 2, a user u (or movie
m) is assigned to a particular cluster ¢, (d.,, for movies)
based purely on the distance to the cluster center. As with
most frequentist algorithms, there is no prior on the cluster
assignments.

In our Bayesian model, we put a Dirichlet prior on the
cluster assignments. More simply understood, we believe
cluster assignments are generated by a Chinese Restaurant
Process (CRP). One big advantage of using a CRP is that
it allows for an unrestricted number of clusters, where new

o

Y
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Figure 2: Generative model for recommdnation and
matrix approximation (bACCAMS). For each sten-
cil, as indexed by /¢, row and cluster memberships
c¢® and d® are drawn from a Chinese Restaurant
Process. The values for the template T®) are drawn
from a Normal Distribution. The observed ratings
R.,m are sums over the stencils S(T(e),c(e),d“)).

clusters can always be created with small probability. To
understand the Chinese Restaurant Process, consider the
following metaphor. A user u is at a Chinese restaurant and
trying to pick a table (cluster) at which to sit. Each table is
chosen with probability proportional to the number of users
already at that table (in that cluster), and a new table is
started with some small probability, proportional to «. To
be concrete, we assume there are N users, and cluster ¢ has
n. users in it; n<7u) is the number of users in cluster ¢ not
including user u. The probability that user uw will go to a
particular cluster c is given by:

(—u) . (—u)
n. u
p(cu — C‘C(_u>,a) _ atN—1 if ne >0
ﬁ new cluster ¢

An analogous expression is available for movies: p(dm, =
d|d(_m), B). Under this model, large values of a and 3 en-
courage the formation of larger numbers of clusters.

Complete model. Putting these two elements together,

we can now describe our complete Bayesian model for co-
clustering:

cu ~ CRP(«) d., ~ CRP(p) (9a)
Tc’d ~ ./\/’(O7 T2) Ru,'m ~ N (Tcu,dm 3 02) (gb)
2 ~1G(7) o ~ 1G(n) (9¢)

Consequently the joint probability distribution over all rat-
ings, given the variances, is given by

p (R,S(T,c,d)|a, B,0%,7°) =CRP(c|a)CRP(d|B) x (10)

—12 Ru,m—Te :
H\/;w? exp( 2:5d> H \/2er2 exp(—( : 202u1dm) )
c,d

(u,m)

This is an extremely simple model similar to [21], akin to a
decision stump. The rationale for picking such a primitive
model is that we will be taking linear combinations thereof
to obtain a very flexible tool. We will now show that, by
design, the model can be effeciently sampled.
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4.2 Collapsed Gibbs Sampler

We now dive into the details of efficiently learning our
model through a collapsed Gibbs sampler. There are three
main parts of the model that need to be sampled: (1) the
cluster assignments ¢ and d, (2) the block values T. 4, and
(3) the variances 72 and ¢®. By design, in particular the
use of conjugate priors, our model is efficient to sample. For
sampling cluster assignments, we find that we can collapse
out T, 4 so that sequential samples of cluster assignments
are not based on stale values of T, 4 and we achieve a sig-
nificantly faster sampler.

4.2.1 Inferring Cluster Assignments

We begin with the challenge of sampling the user cluster
assignments c given only the data R, the movie cluster as-
signments d, and the priors o, 02, 72. To do this, we must
collapse out the block values of T.

In particular, at each step, we check how the likelihood of
the data R changes by assigning a user (or movie) to a new

cluster:

p(R|C(_U)7 Cu =¢, d7 027 T2)

_ 2 2
p(cu=cR,d,a,0",77) x CRP(c|a) PRI, d, 0%, 79)
We denote the observations for block (¢, d), the ratings from
users in cluster ¢ to movies in cluster d, by the vector r. 4;
the updated ratings in the block after the assignment is given
by r'c’d, With this, the calculation above simplifies to:

p(r/c,d|027 T2)

2 2
u = ) b ) ) P
p(cu =R, d,a,0°,7°) x CRP(c|a) I I (reao?, 1)

d

As we shall see, this is easily calculated by keeping simple
linear statistics of the ratings. Moreover, by integrating out
T we avoid the problem of having to instantiate a new value
whenever a new cluster is added.

For a given block (¢, d) with associated r. q, the distribu-
tion of ratings is Gaussian with mean 0 and with covariance
matrix ¥ = ¢?1 + 72117 (due to the independence of the
variances and the additive nature of the normal distribu-
tion). Here we use 1 to denote the identity matrix and 1 to
denote the vector of all 1. Denote by N. 4 the number of
rating pairs (u,m) for which ¢, = ¢ and d,, = d. Hence,
the likelihood of the block (¢, d), as observed in r¢ q, is

e LT -1,
p(rc,d|0'27 T2) = Xp [ 2Nz,d c,d}
(2m)

,d 1
# |5y}

In computing the above expression we need to compute the
determinant of 3, a diagonal matrix with rank-1 update,
and the inverse of said matrix. For the former, we use the
matrix-determinant lemma, and for the latter, the Sherman-
Morrison-Woodbury formula:

1

2 (1T1‘c,d)2
= .

02 024 Nggr?

log || = (N4 — 1)logo® + log [02 —+ Nc7d7'2}

r aS 'rea = — [lreall® —

This allows us to assess whether it is beneficial to assign a
user u or a movie m to a different or a new cluster efficiently,
since the only statistics involved in the operation are sums of
ratings and of their squares, 1" r. 4 and ||r. 4||* respectively.

We denote by N, ; the new cluster count and by r/, ; the
new set of ratings, after having assigned user u to cluster c.

Let
r N, 1
A= w [log(?w) + 1Og02] + 292 [Hr/cdH2 - ||rc,d||2]

be a constant offset, in log-space, that only depends on the
additional ratings that are added to a cluster. That is, A
is independent of the cluster that the additional scores are
assigned to and can be safely ignored. The result is:

-

2 2 n(~™ 0% + N 12 2
p(Cu:C|R,d,CM,O' y T )OcaJr/Nfl J2+N/c,d7—2 (11)
2 (0T (Tr)?
X exp | =—= Z c,d — o
202 o2+ N/C’dTQ 02+ N¢,q72

For a new cluster this can be simplified since there is no
data, hence N.q =0 and r.q = [].

2 2 o o2 2
p(cu:CncW‘R7d7a70— s T )O(Q+N,1 H |:(72+1\1/C dT2:| (12)
4 s

2 (17x, ,)?
X exp {202 g STIN 72
The above expression is fairly straightforward to compute:
we only need to track N g4, i.e. the number of ratings as-
signed to a particular (user cluster, movie cluster) combina-
tion and lTrc,d, i.e. the sum of the ratings for this block.

4.2.2 Inferring Block Values

For the purpose of recommendation and for a subsequent
combination of several matrices, we need to instantiate the
block values T. 4. By checking (10) we see that T 4|rest is
given by

1Trc o2 o
Tﬁd"feStNN( ch,f7m) where p= [1 +wo ?2] (13)
Here too sampling T, 4 only requires having the number of
ratings N¢ 4 and sum of ratings in the block 1Trc,d.

4.2.3 Inferring Variances

Last, we consider how to sample the variances for the
priors, 02 and 72. Both o2 and 72 are generated by the
Inverse Gamma distribution:

b
p(zla,b) =b"T Ha)z " e = (14)
Denote by E the total number of observed values in R. In
this case, o2 is drawn from an Inverse Gamma prior with
parameters (1, 7;):

E
Moot and 7t Y Lum (Rum =T, a,,)” (15)
(wrm)

Analogously, we draw 72 from an Inverse Gamma with pa-
rameters

ek
Yot Y+ = and v+ Y Toa  (16)

c,d
k. and k,, denote the number of user and movie clusters.

4.3 Efficient Implementation

With these inference equations we can implement an ef-
ficient sampler, as seen in Algorithm 3. The key to effi-
cient sampling is to cache the per-cluster sums of ratings
1'r.q. Then reassigning a user (or movie) to a different



Algorithm 3 StencilSampler(M, T, c,d)

1: Initialize row-index and column-index of data in M
2: Initialize statistics for each partition

Nea:=|{(u,m):cu =c¢,dm =d}| and Y4 := Z Mu,m

(u,m):cy=c,dp=d

3: while sampler not converged do
4:  for all users u do
5: For all movie clusters d compute the incremental
changes
lfi") = [{(u,m) : dpp = d} | and yfiu) = Z Moy, m
(u,m):dy,=d
6: Remove u from their cluster
Ne,: ¢ Ne,. = 1™ and Yo, ¢ Ye, . —y™
7 Sample new user cluster ¢, using (11) and (12).
8: Update statistics
Ne,,: ¢ Ne,, +1* and Yo, . ¢ Ye,, +y™
9: end for
10:  for all movies m do
11: Sample movie cluster assignments analogously.
12:  end for
13:  for all (c,d) cluster partitions do
14: Resample T, 4 using (13) and N¢ 4, Ye,q.
15:  end for

16:  Resample o2 and 72 using (15) and (16).
17: end while
18: return T, c,d

(or new) cluster is just a matter of checking the amount of
change that this would effect. Hence each sampling pass
costs O(ky - km - (N + M)+ E) operations. It is linear in the
number of ratings and of partitions.

Note that once y™ and 1) are available for all users
(or all movies), it is cheap to perform additional sampling
sweeps at comparably low cost. It is therefore beneficial
to iterate over all users (or all movies) more than once, in
particular in the initial stages of the algorithm. Also note
that the algorithm can be used on datasets that are being
streamed from disk, provided that an index and an inverted
index of M can be stored: we need to be able to traverse the
data when ordered by users and when ordered by movies. It
is thus compatible with solid state disks.

4.4 Additive Combinations of Stencils

As before, we find that using a linear combination of sten-
cils is far more powerful than just a single stencil. Therefore,
we enumerate the stencils by S(T“)7 c, d“)), where sten-
cil index ¢ ranges from 1 to S. Correspondingly we now
need to sample from a set of S(T([),c“),d“)) and 72 per
stencil. However, we keep the additive noise term N (0, 0?)
unchanged. This is the model of Figure 2. The additivity of
Gaussians makes inference easy:

Roum ~ N (Z S(T“),C(D7d(2))u,m,02> ) (17)
4

Note, though, that estimating S jointly for all indices ¢ is
not tractable since various clusterings (c(e)7 d“)) overlap and
intersect with each other, hence the joint normal distribution
over all variables would be expensive to factorize.

Instead, we sample over one stencil at a time, as shown in
Algorithm 4. This algorithm only requires repeated passes

Algorithm 4 bACCAMS

1: initialize residuals R «+ R and T¥ =0 V¢

2: while sampler not converged do

3: for all stencils ¢/ =1...5 do

4: R+~ R+S(TY,c® d®) {Without stencil £}

5: (T®,c®, d®) « StencilSampler(R, T®), c®,d®)
6: R+ R-S(TY,c d®) {With stencil £}

7:  end for

8: end while

through the dataset. Moreover, it can be modified into a
backfitting procedure by fitting one matrix at a time and
then fixing the outcome. Capacity control can be enforced
by modifying o and g such that the probability of a new
cluster decreases for larger ¢, i.e. by decreasing a and f.
As a result following the analysis in the single stencil case,
each sampling pass costs O(S - (kn - km - (N + M) + E))
operations. It is linear in the number of ratings, in the
number of partitions and in the number of stencils.

S. EXPERIMENTS

We evaluate our method based on its ability to perform
matrix completion, matrix approximation and to give inter-
pretable results. Here we describe our experimental setup
and results on real world data, such as the Netflix ratings.

5.1 Implementation

We implemented both ACCAMS, the k-means-based al-
gorithm, as well as bACCAMS, the Bayesian model. Unless
specified otherwise, we run Algorithm 2 for up to 7' = 50
iterations. Our system can also iterate over the stencils mul-
tiple times, such that earlier stencils can be re-learned after
we have learned later ones. In practice, we observe this only
yields small gains in accuracy, hence we generally do not use
it.

We implemented bACCAMS using Gibbs sampling (Sec-
tion 4.4) and used the k-means algorithm ACCAMS for the
initialization of each stencil. Following standard practice,
we bound the range of o by omax from above. This rejection
sampler avoids pathological cases. For the sake of simplicity,
we set k = k, = k,, to be the maximum number of clusters
that can be generated in each stencil. When inferring the
cluster assignments for a given stencil, we run three itera-
tions of the sampler before proceeding to the next stencil. As
common in MCMC algorithms, we use a burn-in period of
at least 30 iterations (each with three sub-iterations of sam-
pling cluster assignments) and then average the predictions
over many draws. Code for both ACCAMS and bACCAMS
is available at http://alexbeutel.com/accams.

5.2 Experimental Setup

Netflix. We run our algorithms on data from a variety of
domains. Our primary testing dataset is the ratings dataset
from the Netflix contest. The dataset contains 100 million
ratings from 480,189 users and 17,770 movies. Following
standard practice for testing recommendation accuracy, we
average over three different random 90:10 splits for training
and testing.

CMU Face Images. To test how well we can approximate
arbitrary matrices, we use image data from the CMU Face


http://alexbeutel.com/accams

Images dataset'. It contains black and white images of 20
different people, each in 32 different positions, for a total of
640 images. Each image has 128 x 120 pixel resolution; we
flatten this into a matrix of 640 x 15360, i.e. an image by
pixel matrix.

AS Peering Graph. To assess our model’s ability to deal
with graph data we consider the AS graph®. It contains
information on the peering information of 13,580 nodes. It
thus creates a binary matrix of size 13, 580 x 13, 580 with 37k
edges. Since our algorithm is not designed to learn binary
matrices, we treat the entries {0, 1} as real valued numbers.

Parameters. For all experiments, we set the hyperparame-
ters in bACCAMS to o = 8 =10, o = 2, 13 = 0.3, 7o = 5,
and v, = 0.3. Depending on the task, we compare AC-
CAMS against SVD++ using the GraphChi [12] implemen-
tation, SVD from Matlab for full matrices, and previously
reported state-of-the-art results.

Model complexity. Since our model is structurally quite
different from factorization models, we compare them based
on the number of bits in the model and prediction accuracy.
For factorization models, we consider each factor to be a 32
bit float. Hence the complexity of a rank r SVD++ model
of N users and M movies is 32 - (N + M) bits.

For ACCAMS with S stencils and k x k co-clusters in each
stencil, the cluster assignment for a given row or column is
log, k bits and each value in the stencil is a float. As such,
the complexity of a model is S((N + M) log, k+32-k?) bits.

In calculating the parameter space size for LLORMA, we
make the very conservative estimate that each row and col-
umn is on average part of two factorizations, even though
the model contains more than 30 factorizations that each
row and column could be part of.

5.3 Matrix Completion

Since the primary motivation of our model is collabora-
tive filtering we begin by discussing results on the classic
Netflix problem; accuracy is measured in RMSE. To avoid
divergence we set omax = 1. We then vary both the number
of clusters k£ and the number of stencils S.

A summary of recent results as well as results using our
method can be found in Table 2. Using GraphChi we run
SVD++ on our data. We use the reported values from
LLORMA [13] and DFC [16], which were obtained using
the same protocol as reported here.

As can be seen in Table 2, bACCAMS achieves the best
published result. We achieve this while using a very different
model that is significantly simpler both conceptually and in
terms of parameter space size. We also did not use any of the
temporal and contextual variants that many other models
use to incorporate prior knowledge.

As shown in Figure 1, we observe that per bit our model
achieves much better accuracy at a fraction of the model
size. In Figure 3(a) we compare different configurations of
our algorithm. As can be seen, classic co-clustering quickly
overfits the training data and provides a less fine-grained
ability to improve prediction accuracy than ACCAMS. Since
ACCAMS has no regularization, it too overfits the training
data. By using a Bayesian model with bACCAMS, we do
not overfit the training data and thus can use more stencils
for prediction, greatly improving the prediction accuracy.

Thttp://www.cs.cmu.edu/tom/faces.html
Zhttp://topology.eecs.umich.edu/data.html

Method Parameters Size Test RMSE
SVD++ [12] R=25 49.8MB | 0.8631
DFC-NYS [16] Not reported 0.8486
DFC-PROJ [16] Not reported 0.8411
LLORMA [13] R=1 3.98MB | 0.9295
LLORMA [13] R=5,a>30 19.9MB | 0.8604
LLORMA [13] | R=10,a>30 | 39.8MB | 0.8444
LLORMA [13] R=20,a>30 | 79.7MB | 0.8337
ACCAMS k=10,s=13 2.69MB 0.8780
ACCAMS k=100,s=5 | 227TMB | 0.8759
bACCAMS k=10, s =50 | 10.4MB | 0.8403
bACCAMS k=10,s=70 | 14.5MB | 0.8363
bACCAMS k=10, s =125 | 25.9MB | 0.8331

Table 2: bACCAMS achieves an accuracy for matrix
completion on Netflix better than or on-par with
the best published results, while having a parame-
ter space a fraction of the size of other methods. a
denotes the number of anchor points for LLORMA
and sizes listed are the parameter space size.

5.4 Matrix Approximation

In addition to matrix completion, it is valuable to be able
to approximate matrices well, especially for dimensionality
reduction tasks. To test the ability of ACCAMS to model
matrix data we analyze both how well our model fits the
training data from the Netflix tests above as well as on image
data from the CMU Faces dataset and a binary matrix from
the AS peering graph. (Note, for Netflix we now use the
training data from one split of the dataset.) For each of these
of datasets we compare to the SVD (or SVD++ to handle
missing values). We also use our algorithm to perform classic
co-clustering by setting S = 1 and varying k.

As can be seen in Figure 3(b-d), ACCAMS models the
matrices from all three domains much more compactly than
SVD (or SVD++ in the case of the Netflix matrix, which
contains missing values). In particular, we observe on the
CMU Faces matrix that ACCAMS uses in some cases under
i of the bits as SVD for the same quality matrix approxima-
tion. Additionally, we observe that using a linear combina-
tion of stencils is more efficient to approximate the matrices
than performing classic co-clustering where we have just one
stencil. Ultimately, although the method was not designed
specifically for image or network data, we observe that our
method is effective for succinctly modeling the data.

5.5 Interpretability

In any model the structure of factors makes assumptions
about the form of user preferences and decision making. The
fact that our model uses a smaller parameter space while
achieving an improvement in the generalization error sug-
gests that our modeling assumptions better match the un-
derlying data generation (how people make decisions). One
advantage of our model being compact and conceptually
simple is that we can understand our learned parameters.

To test the model’s interpretability we use ACCAMS to
model the Netflix data with S = 20 stencils and k% = 100
clusters (a model of similar size to a rank-3 matrix factor-
ization). Here we look at two ways to interpret the results.

First we view the cluster assignments in stencils as induc-
ing a hierarchy on the movies. That is, movies are split in
the first level based on their cluster assignments in the first
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Figure 3:
SVD, SVD++, or classic co-clustering.

stencil. At the second level, we split movies based on their
cluster assignments in the second stencil, etc. In Figure 4
we observe the hierarchy of TV shows induced by the first
three stencils learned by ACCAMS (we only include shows
where there is more than one season of that show in the leaf
and we pruned small partitions due to space restrictions).

As can be seen in the hierarchy, there are branches which
clearly cluster together shows more focused on male audi-
ences, female audiences, or children. However, beyond a first
brush at the leaf nodes, we can notice some larger structural
differences. For example, looking at the two large branches
coming from the root, we observe that the left branch gen-
erally contains more recent TV shows from the late 1990s to
the present, while the right branch generally contains older
shows ranging from the 1960s to the mid 1990s. This can be
most starkly noticed by “Friends,” which shows up in both
branches; Seasons 1 to 4 of “Friends” from 1994-1997 fall in
the older branch, while Seasons 5 to 9 from 1998-2002 fall in
the newer branch. Of course the algorithm does not know
the dates the shows were released, but our model learns these
general concepts just based on the ratings. From this it is
clear the stencils can be useful for breaking down content in
a meaningful structured way, something that is not possible
under classic factorization approaches.

While the hierarchy demonstrates that our stencils are
learning meaningful latent factors, it may be difficult to al-
ways understand individual clusters. Rather, to use knowl-
edge from all of the stencils, we can look to the use case of
“Users who watched X also liked Y,” and ask given a movie
or TV show to search, can we find other similar items? We
do this by comparing the set of cluster assignments from
the given movie to the set of cluster assignments of other
items. We measure similarity between two movies using the
Hamming distance between cluster assignments.

As can be seen in Table 5, we find the combination of
clusters for different movies and TV shows can be used to
easily find similar content. While we see some obvious cases
where the method succeeds, e.g. “Sex and the City” returns
six more seasons of “Sex and the City,” we also notice the
method takes into account more subtle similarities of movies
beyond genre. For example, while the first season of “Sein-
feld” returns the subsequent seasons of “Seinfeld,” it is fol-
lowed by three seasons of “Curb Your Enthusiasm,” another
comedy show by the same writer Larry David. Similarly,
searching for Stanley Kubrick’s “2001: A Space Odyssey”
returns other Stanley Kubrick movies, as well as other criti-
cally acclaimed films from that era, particularly thematically
similar science fiction movies. Searching for “Scooby-Doo”
returns topically similar children’s shows, specifically from
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On images, ratings, and binary graphs, ACCAMS approximates the matrix more efficiently than

Stencil 1 Stencil 2

Figure 6: Examples of original images and the first
two stencils. The decomposition is very similar to
that of eigenfaces [22], albeit much more concise in
its nature.
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Stability of the assign-

the mid to late 1900’s. From this we get a sense that AC-
CAMS does not just find similarity in genre but also more
subtle similarities.

5.6 Properties of ACCAMS

Aside from ACCAMS’s success across matrix completion
and approximation, it is valuable to understand how our
method is working, particularly because of how different it
is from previous models. First, because ACCAMS uses back-
fitting, we expect that the first stencil captures the largest
features, the second captures secondary ones, etc. This idea
is backed up by our theoretical results in Section 3.3, and we
observe that this is working experimentally by the drop off
in RMSE for our matrix approximation results in Figure 3.
We can visually observe this in the image approximation of
the CMU Faces. As can be seen in Figure 6, the first stencil
captures general structures of the room and heads, and the
second starts to fill in more fine grained details of the face.



Newer Content !

Older Content

]
}7
%
}7
%
%

|

£ 3 Ez99 y7s9|]2 3 X 3epg 2292 F g § 3
§ 8 S3¢ 3 282 3 s ¥ X § X 3 § & 8 @
3 x I35 883 s 832 8 § X8 S % oe
§ 8 33850 98 2 g6 3 8 & 5 g p v 3
S 2 @2 o a 3 =T © ° 8 o
5 S 39 2 & o9g s $853 ¥ § moc ™ 28
= 358 9 g 23 S ISE a 2 3 o 3
@ S 8 5 2 3% S » A3 9 # & = o &
<32 I wgas Q T2 g o Y F o QT
g Sod 2 EZF g3 T 5 e 3 e g
= $§ 2 2 3¢ 2o 3 2 3 3
33 o 22 = ¢ 3 E
g S o> 83 2 & 1%
Q2 » I 9 28 53 @
$R2 2 %85 3 o T 3 (S
8§ § % s¢ > g 8 <
- =2 F8s N
> 3 3 3
» 3 To
e 2 >
°© g3
& I 3
s 3 48
N 2%
S a3
S g
5
is}
B

— —— T 1
- =
Q b ¥XQ T 357 o5 ¢ 5% 53¢|2 895 °% ¥
S In|® 838 S 3% g S | x < 8 = 3
T 538 3 gz 2048 25 & Se 8|8 £8>¢8 ¢
Lo = S @ > 0 a o ST @
a 3 3 <& 3 & I3 <Q S ®© 38 > o
< 3 > 3 © > 2 3 o
05"§ my ~3 & §2 % Q S|z @ S
3 x D o S 3703 ] a | & < o)
g 20 ERIIER <) & s < 3
g g 80588 938 ;7 §S5¢ /8 §28¢
= = I3 3 S |a s§& %
83 $3le33 8535 5¢ 38%0
T Q DT 28 3 8o 3, 3 3 3
85 HIEELE R R 3 83°
2R 2 TF 4 3 -
L9 g5llo 23 @32 2 s 38 3
=3 5413 38 ] 3 o 3T 0
s o35 38 % % S g
X3 gQ = S 3
[Cl%)
2 55 g 2
s 32 [
= a3 3
3 @S B
L

11D 1B\ ‘S48pIIS ‘|d winubeyy ‘seuojsjull4 oy

LRI BY) UO BSNOH 8]
yea1) s,uosmeq

USIPIIYO M POLIEJ MOYS UBW OYL ‘liH 84j o Bury|

Figure 4: Hierarchy of TV Shows on Netflix based

2001: A Space Odyssey Sex and the City: Season 1

on the first three stencils generated by ACCAMS.
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Figure 5: For a given movie or TV show on Netflix, we

The Bayesian model, bACCAMS, backfits in the first it-
eration of the sampler but ultimately resamples each stencil
many times thus loosening these properties. In Figure 7, we
observe how the distribution of users and movies across clus-
ters changes over iterations and number of stencils, based on
our run of bACCAMS with S = 70 stencils and a maximum
of k = 10 clusters per stencil. As we see in the plot of
entropy, movies, across all 70 stencils, are well distributed
across the 10 possible clusters. Users, however, are well
distributed in the early stencils but then are only spread
across a few clusters in later stencils. In addition, we notice
that while the earlier clusters are stable, later stencils are
much less stable with a high percentage of cluster assign-
ments changing. Both of these properties follow from the
fact that most users rate very few movies. For most users
only a few clusters are necessary to capture their observed
preferences. Movies, however, typically have more ratings
and more latent information to infer. Thus through all 70
stencils we learn useful clusterings, and our prediction accu-
racy improves through S = 125 stencils.

6. DISCUSSION

Here we formulated a model of additive co-clustering. We
presented both a k-means style algorithm, ACCAMS, as well
as a generative Bayesian non-parametric model with a col-
lapsed Gibbs sampler, bACCAMS; we obtained theoretical
guarantees for matrix approximation through additive co-

can use the cluster assignments to find related content.

clustering; and we showed that our method is concise and
accurate on a diverse range of datasets, including achiev-
ing the best published accuracy for matrix completion on
Netflix.

Given the novelty and initial success of the method, we
believe that domain-specific variants of ACCAMS, such as
for community detection and topic modeling, can and will
lead to new models and improved results. In addition, given
the modularity of our framework, it is easy to incorporate
side information, such as explicit genre and actor data, in
modeling rating data that should lead to improved accuracy
and interpretability.
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