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ABSTRACT
Recommender models trained on historical observational data alone
can be brittle when domain experts subject them to counterfactual
evaluation. In many domains, experts can articulate common, high-
level mappings or rules between categories of inputs (user’s history)
and categories of outputs (preferred recommendations). One chal-
lenge is to determine how to train recommender models to adhere
to these rules. In this work, we introduce the goal of domain-specific
concordance: the expectation that a recommender model follow a
set of expert-defined categorical rules. We propose a regularization-
based approach that optimizes for robustness on rule-based input
perturbations. To test the effectiveness of this method, we apply it
in a medication recommender model over diagnosis-medicine cate-
gories, and in movie and music recommender models, on rules over
categories based on movie tags and song genres. We demonstrate
that we can increase the category-based robustness distance by up
to 126% without degrading accuracy, but rather increasing it by
up to 12% compared to baseline models in the popular MIMIC-III,
MovieLens-20M and Last.fm Million Song datasets.

CCS CONCEPTS
• Information systems → Recommender systems.

ACM Reference Format:
Ananth Balashankar, Alex Beutel, and Lakshminarayanan Subramanian. 
2021. Enhancing Neural Recommender Models through Domain-Specific 
Concordance. In Proceedings of the Fourteenth ACM International Conference
on Web Search and Data Mining (WSDM ’21), March 8–12, 2021, Virtual Event, 
Israel. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3437963. 
3441784

1 INTRODUCTION
Black box neural recommender models trained on only observed
historical data can make costly errors, which limit their widespread
deployment in scenarios that require domain knowledge [39, 52, 65].
Domain experts in these scenarios are particularly skeptical as black
box recommender models often contradict rules derived from do-
main knowledge that have been validated through intervention
based studies like randomized control trials. Even if a model is
accurate on historical data, not making use of domain knowledge
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Figure 1: Category-based Rules in Recommenders

can limit usefulness [56]. For example, in the music recommenda-
tion domain, users could potentially expect that the genre of their
recommendations would not change, if they swapped one of the
songs in their history with another song from the same genre, and
in the health domain, doctors may expect recommendations for
medications to follow domain-specific rules.

We propose a definition of domain-specific concordance to reflect
this expectation from domain experts that recommender models
follow domain specific rules over input and output categories. As
shown in Figure 1, for a recommender model ℎ, which maps a sub-
set of inputs 𝑋 (historical items) to a subset of outputs 𝑌 (preferred
recommendations), we consider the setting where category map-
ping functions 𝑓𝐼 , 𝑓𝑂 map individual input items 𝑥 ∈ 𝑋 and output
items 𝑦 ∈ 𝑌 to their corresponding set of categories 𝑓𝐼 (𝑥), 𝑓𝑂 (𝑦).
The domain specific rule 𝑝 ( 𝑗) = 𝑘 captures the expectation, that if
an input 𝑥 mapped to a category 𝑗 exists in 𝑋 , ℎ should recommend
an output 𝑦 in category 𝑘 , such that 𝑗 ∈ 𝑓𝐼 (𝑥) and 𝑘 ∈ 𝑓𝑂 (𝑦).

With domain specific concordance, we expect that the domain-
specific rules 𝑝 ( 𝑗) = 𝑘 are generally obeyed by ℎ, but at the same
time, we know in personalized applications that these rules may
not apply to every possible input or situation. Therefore, to safely
make use of these rules beyond the historical data, we optimize
for local robustness in the model ℎ, such that if an example (𝑋,𝑌 )
matches a domain-specific rule 𝑝 ( 𝑗) = 𝑘 such that ∃𝑥 ∈ 𝑋, ∃𝑦 ∈
𝑌, 𝑗 ∈ 𝑓𝐼 (𝑥) ∧ 𝑘 ∈ 𝑓𝑂 (𝑦), the model should also obey that rule
by recommending an output in category 𝑘 for any perturbation
𝑥 ′ on the item 𝑥 that retains the category 𝑗 , i.e 𝑗 ∈ 𝑓𝐼 (𝑥 ′). We
seek to minimize any output-category misclassifications over such
within-category input perturbations. This framework of robustness
in recommender systems to within-category input perturbations to
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align with domain expert-defined rules, and the method of incorpo-
rating counterfactual domain specific rule-based data augmentation
into training are our main contributions.

Our framing of domain-specific concordance builds on exist-
ing robustness research, which answers the question, “How do
the model’s predictions change under small perturbations to in-
puts?” In classifiers, this type of trust has been developed through
enabling counterfactual explanations [15, 38, 43] and improving ro-
bustness in output predictions when inputs have imperceptible and
label-invariant perturbations [26, 29, 70]. However, in recommender
systems, making input changes that are imperceptible and label-
invariant is difficult. While making models robust against these
adversarial failure modes is important, they are orthogonal in scope.
On the other hand, strictly enforcing fine-grained behaviors in rec-
ommenders such as individual user-interaction [30], trust modeling
[35] can be hard to achieve and further exacerbated by cold-start
problems [2]. Rather, while drawing on this body of work, we lever-
age domain-specific mappings between categories when generating
the counterfactual perturbations. Through our framework, we in-
corporate the expectations of domain experts by using their rules
to generate within-category counterfactual inputs and optimizing
neural recommender models to avoid categorical mistakes when
presented with them. Hence, we demonstrate the generality and
value of our approach by instantiating it over coarsely-defined cat-
egories for state-of-the-art recommender models in the domains of
movies, music and medicine.

Content Recommendations Domain Concordance: In con-
tent (movie and music) recommendations, we employ our frame-
work to the hypothesis that users select content by genre, and as
such we optimize for robustness to within-genre perturbations. For
example, if a user with a history of watching “animation” movies
wanted to watch next another animation movie, then they would
still likely have wanted to watch an animation movie, even if a
movie (e.g. Toy Story) in their history was replaced with another
movie (Toy Story II), both from the animation category. Through
this approach, we improved overall accuracy on the original held-
out test data by 0.03-2.3%. Further, we evaluate robustness as the
distance between the categories of perturbed input items that brings
about a category change in the mapped predicted output (see Sec-
tion 4.3 for a formal description). The improvement in accuracy
is driven by an increase in robustness distance by 101-126% as
compared to state-of-the-art models on the MovieLens and Million
Song datasets. This further confirms the value in enhancing neural
recommender models learning through domain specific category
mappings in addition to optimizing accuracy on observational data.

Medical Recommendations Domain Concordance:We also
test this approach on the problem framing that doctors generally
expect that for a patient with a particular category of skin disease
(e.g., Dermatophytosis), there is a corresponding category of medi-
cations (e.g., Antimycotics) that should typically be prescribed. If
our counterfactual patient’s attributes changed in only which kind
of Dermatophytosis they have, we may expect that the category
of medication recommended would not change, particularly if doc-
tors have previously confirmed that they prescribe Antimycotics to
patients with Dermatophytosis. Incorporating this domain-specific
concordance improves overall F1 score by 12.2% on the original test
data. Further, this improvement is driven by increase in robustness

distance by 75.6% as compared to state-of-the-art baseline models
[50]. This is significant as we optimize for recommenders to not
alter the category of medication for minor category-invariant per-
turbations in diagnostic codes as expected by doctor-validated rules.
While our contribution is not application specific, and particularly
for the medical domain we believe that a medicine recommender
would still need significant doctor review, we believe experiments
across these domains together provide strong evidence for the use-
fulness and effectiveness of our proposed technique.

To summarize, our key contributions include:
• Framework of Domain-Specific Concordance for Rec-
ommenders: We demonstrate how to align a model with
domain-specific rules through within-category input pertur-
bations.

• Optimization through Robustness: We offer a method-
ology based on robust within-category regularization that
improves adherence to the domain-specific rules

• Empirical evidence that ourmethod improves both domain-
specific categorical concordance and overall accuracy across
recommendation tasks in three domains.

2 RELATEDWORK
The notion of a model following a set of expert defined rules is
prevalent in multiple domains of machine learning (ML) research.
Below, we present a brief overview of these perspectives and how
our approach aligns with them.

Hybrid Systems: Many approaches have been proposed to aid
the domain expert in interpreting the machine learning model’s
predictions [14, 58]. Tools to guide the underlying deep learning
model through interactive feedback [5] and inductive logic [63]
that increases diversity and aligns the model’s predictions to ex-
pert knowledge have been proposed in the medical domain [37].
Applying data mining to extract association rules using Bayesian
methods between input and output categories are also well studied
[33], but they are typically not validated with rules by experts.

Interpretability: Mapping human interpretable rules with ML
models has also been done to understand the inner workings of
a black box machine learning model. For a broad review of the
various notions of interpretability, we refer to [13]. Ourwork closely
relates to the “task related latent dimensions of interpretability”.
Here, we care about the hypothesis of local interpretability[49],
with incomplete coverage of domain expertise [67]. By restricting
to this type of interpretability over expert-defined rules on subsets
of the data, we seek that our models obey those rules.

Adversarial Robustness: To make machine learning models
robust to perturbations, prior work has proposed defenses so that
the model does not change it’s output prediction for a small (𝜖), but
humanly imperceptible change in the input [6, 8]. However, such
adversarial robustness may either increase [25] or decrease [66]
the overall accuracy of the models depending on the human spec-
ified notion of robustness. Hence, in the field of computer vision,
robust models over concept based perturbations [64] and in natural
language processing [23], robustness over word substitutions with
synonyms are desired [45]. This indicates that the range of pertur-
bations over which the robustness is defined, is equally important
and going beyond geometrical definitions of robust boundaries is
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valuable [34, 47]. Hence, we choose to ground our models in expert
defined relationships between inputs and outputs, which we would
expect the non-observed data to generalize over.

Robustness in Recommenders: Recently, there has been a
lot of interest in making recommender systems robust to avoid
extremely undesired recommendations (e.g. horror films to children)
[59, 65]. Robust models that explicitly guard against multiple attack
models [24] like profile injection [10], noisy ratings [42] and implicit
issues like outliers [55], data not missing at random [32] have
been proposed. Our definition is complementary to prior work in
robust recommender models which propose simpler models like
decision trees [31], fairness guarantees to avoid unintended bias
[3, 4, 9, 51], temporal coherence to avoid catastrophic forgetting
[59], defence against adversarial attacks of imperceptible changes
[7, 21], and uncertainty basedmodel calibration [65]. However, such
approaches implicitly assume the presence of embeddings of items
on which a similarity function (e.g cosine similarity) can be applied
and assign a penalty if the recommender predicts items with low
similarity. Instead, we explicitly use domain specific rules defined
over categories of items and expect that the recommendations
do not deviate categorically from those rules. Additionally, such
approaches focus primarily on training-time attacks and do not
address counterfactual scenarios that might arise during inference.

Substitutability: In recommender systems, the notion of sub-
stitutable items comes closest to the approach we take to create
perturbations based on expert defined rules [36]. Such substitutable
items have been inferred through browsing patterns like "users
who viewed X bought Y" and co-purchasing logs [60]. Prior work
incorporating categories through hierarchical autoencoders [12],
multi-tasking [68], categorical embeddings [27] in recommender
systems have improved accuracy. We combine these two insights
and use expert provided rules to create category based substitutable
counterfactual data to augment the existing training dataset.

3 PROBLEM FORMULATION
We now present a formal description of our problem formulation
and our goal to enhance neural recommender models through
domain-specific concordance.

3.1 Notations
As illustrated in Figure 1, in canonical recommender systems, each
user has a discrete subset of historical items 𝑋 ⊆ X (e.g., movies,
diseases, etc.), which are then used to recommend to the user an-
other subset of items 𝑌 ⊆ Y, which may be of a different type (e.g.,
another movie, medicine). The recommendation problem is to train
a model ℎ : P(X) → P(Y) given a dataset 𝐷 : P(X) × P(Y) (P
denotes the power set). Our problem formulation works closely
with the definition of categories of items that we can use to group
recommended and historical items. This categorization based on
individual item’s characteristics is a choice in favor of discrete fi-
nite sets to describe the domain knowledge, and has been made in
prior work [17] for easier reasoning by human experts. We assume
the availability of such coarse-grained categories in our problem
definition. Let’s consider a finite number of discrete categories
based on characteristics of the input items to be 𝑗1, 𝑗2, .. 𝑗𝑛 ∈ 𝐶𝐼

(e.g., genres or part of the body). Each input item 𝑥 ∈ X can be

mapped to a subset of categories in 𝐶𝐼 by applying the function
𝑓𝐼 : X → P(𝐶𝐼 ). Similarly, let’s consider finite discrete output
categories 𝑘1, 𝑘2, .., 𝑘𝑚 ∈ 𝐶𝑂 and an output category set mapping
function 𝑓𝑂 : Y → P(𝐶𝑂 ). We consider applications where there
are priors between individual categories 𝑗 ∈ 𝐶𝐼 and 𝑘 ∈ 𝐶𝑂 , that
have been given by experts as domain knowledge. That is, we
have knowledge of high level relationships between inputs and
outputs that we expect the model to be mostly stable over. We rep-
resent these priors between individual categories using a mapping
𝑝 : 𝐶𝐼 → 𝐶𝑂 . This formalizes the expectation that for an input in a
specific category 𝑗 ∈ 𝐶𝐼 , an output in a specific category 𝑘 ∈ 𝐶𝑂
is recommended. We also consider that a distance metric 𝑑𝑐 exists
between any two categories, both over inputs: 𝑑𝑐 ( 𝑗, 𝑗 ′) and outputs:
𝑑𝑐 (𝑘, 𝑘 ′).

3.2 Medicine Domain Example
We illustrate the formulation of our problem with an example from
the medical domain, where domain specific criteria are prevalent.
In the MIMIC-III dataset, patient health data and their correspond-
ing visits to the hospital and medication are stored in electronic
health records. The task of medication recommendation is to pre-
dict the set of medications prescribed by doctors by taking into
account the patient’s diagnostic codes, previous medication and
other information. In this example, we consider the diagnostic ICD-
9 codes (International Classification of Diseases) for a patient as
input 𝑋 . Each of the ICD-9 codes, 𝑥 ∈ 𝑋 belong to an ontology
of diagnostic codes, defined by a tree structure [40]. For example,
consider the ICD-9 code “110.2" which describes “Dermatophytosis
of hand”, which belongs to the parent category “Dermatophytosis”:
𝑗 in the ICD tree. In our example, 𝑓𝐼 is given by the 𝑝𝑎𝑟𝑒𝑛𝑡 function
over the ICD-9 ontology tree. Also, let 𝑦 ∈ 𝑌 correspond to a rec-
ommended ATC (Anatomical Therapeutic Chemical Classification
System) medication code [41], for example “J02AA” which describes
“Antibiotics for systemic use”. Similarly, 𝑓𝑂 is the 𝑝𝑎𝑟𝑒𝑛𝑡 function
in the ATC ontology which maps to the parent category 𝑘 , which
in our example is “Antimycotics”. For the mapping between cate-
gories of diagnoses and medicine, there are expert-validated priors
extracted from medical studies; for example in [61], the disease
category “Dermatophytosis” 𝑗 is mapped to the medicine category
“Antimycotics” 𝑘 . Each of these categories encapsulate a total of
10 ICD-9 codes and 3 ATC codes within them respectively. So, for
instance, if the input ICD-9 code was: “Dermatophytosis of foot”
(also in category 𝑗 ) instead of “Dermatophytosis of hand”, then
we, using the mappings from [61] as priors, we expect that one of
the 3 medicines in category “Antimycotics” 𝑘 would likely still be
recommended.

3.3 Domain-Specific Concordance
Based on this understanding of examples and categories, we define
now a set of perturbations and the concordance we expect over it.

Definition 3.1. Within-Category Perturbation: For an exam-
ple 𝑋 ⊆ X and a given input category 𝑗 , we define a set 𝛿 𝑗 (𝑋 )
which contains perturbations of 𝑋 by replacing a single item 𝑥 ∈ 𝑋

from category 𝑗 ∈ 𝑓𝐼 (𝑥) with another item also in category 𝑗 :

𝛿 𝑗 (𝑋 ) = {𝑥 ′ ∪ 𝑋 \ 𝑥 |𝑥 ∈ 𝑋, 𝑥 ′ ∉ 𝑋, 𝑗 ∈ 𝑓𝐼 (𝑥), ∈ 𝑓𝐼 (𝑥 ′)} (1)
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As defined, 𝛿 𝑗 (𝑋 ) offers a set of examples that, at least accord-
ing to category 𝑗 , are fairly similar to 𝑋 . We now formally define
concordance where such perturbations are done on a subset of the
dataset 𝐷𝑝 ⊆ 𝐷 , which are covered by the domain-specific rules 𝑝 .

Definition 3.2. Domain-Specific Concordance: For all exam-
ples (𝑋,𝑌 ) ∈ 𝐷𝑝 ⊆ 𝐷 , such that ∃𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌 that matches a
specified rule 𝑝 ( 𝑗) = 𝑘 , i.e. 𝑗 ∈ 𝑓𝐼 (𝑥) and 𝑘 ∈ 𝑓𝑂 (𝑦), then we con-
sider a model ℎ to obey domain-specific concordance if for all within-
category perturbations 𝑋 ′ ∈ 𝛿 𝑗 (𝑋 ), we observe that ∃𝑦′ ∈ ℎ(𝑋 ′)
such that 𝑘 ∈ 𝑓𝑂 (𝑦′).

Stated more colloquially, whenever there is an example for which
we see a relationship between the input and output that matches
one of the domain expert rules 𝑝 , we expect the model to be sta-
ble and continue to obey that rule over small changes that do not
change the category of the input. Hence, we focus on changing one
item at a time, and check if the outputs that had initially followed
the category mapping continue to do so after the perturbation. This
allows domain practitioners to reason about counterfactual changes
in the inputs that do not modify input categories that are mapped
by domain specific priors, and check for safe exploration within the
boundaries specified by domain specific rules. However, we do not
cover the scenarios when the input’s categories do change, or when
the example does not match an existing rule. Thus, we restrictively
guard against sudden changes in a recommender model’s output
categories due to minor changes in the input whose categories
remain unchanged. As motivated in the Introduction, in a movie
recommender model, changing one “animation” movie to another
in the user history, should not drastically change the category of
all movies recommended from “animation” to say, “documentary”.
Specifically, we expect that at least one of the movies recommended
still is an “animation” movie. Hence, our proposal is a hybrid frame-
work where mappings between human interpretable categories can
co-exist with neural recommender models. Having introduced the
domain-specific category mappings, we now present recommender
models that follow these category mappings.

4 METHODS
Below, we present the methodology to optimize for robustness over
the within-category perturbation dataset.

4.1 Rule-based Augmentation
In order to improve model robustness by reducing category mis-
classification, we define the category misclassification loss over
within-category perturbations of examples in the observed dataset
𝐷 as follows:

Definition 4.1. Category Misclassification Loss: For all exam-
ples (𝑋,𝑌 ) ∈ 𝐷𝑝 ⊆ 𝐷 , such that ∃𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌 with 𝑝 ( 𝑗) =

𝑘, 𝑗 ∈ 𝑓𝐼 (𝑥) ∧ 𝑘 ∈ 𝑓𝑂 (𝑦) and the indicator loss I, the loss L𝑣 due to
misclassifying the output category 𝑘 while the input changes from
𝑋 to 𝑋 ′ ∼ 𝛿 𝑗 (𝑋 ) can be written as

L𝑣 (𝐷𝑝 ) = E(𝑋,𝑌 ) ∈𝐷𝑝
E

( 𝑗,𝑘) :𝑝 ( 𝑗)=𝑘
𝑋 ′∼𝛿 𝑗 (𝑋 )

I(𝑘 ∉
⋃

𝑦′∈ℎ (𝑋 ′)
𝑓𝑂 (𝑦′)) (2)

We now have a loss over categories: 𝐿𝑣 where we expect the
output category to remain unchanged on counterfactual examples

𝑋 ′ (Note that the above loss is non-differentiable and an approx-
imation is provided in the following section). But, we still expect
the exact label 𝑌 to be right for the original example 𝑋 using the
multi-label cross-entropy loss L, measured using L𝑐 as follows.

L𝑐 (𝐷) = E(𝑋,𝑌 ) ∈𝐷L(ℎ(𝑋 ), 𝑌 ) (3)

Attempting to write a loss similar to (2), but on the actual coun-
terfactual outputs 𝑌 ′, is difficult as we essentially do not observe
them [44] and the changes are not imperceptible. However, by
focusing on higher-level categories in (2), we expect that the cat-
egorical mapping 𝑝 generalizes over unobserved counterfactual
data (𝑋 ′, 𝑌 ′). Expecting that models follow rules over categories of
recommended items instead of specific counterfactual recommen-
dations is what makes our framework easy to reason about, but also
enforceable while training without having to explain away [62] all
the counterfactual outputs by introducing more Bayesian priors. So,
in order to improve robustness by training over Rule-based Aug-
mented data (RA), while ensuring accuracy on the observational
data, we combine the objectives using a 𝛼-weighted Lagrangian
term to learn a new regularized model ℎ𝑅𝐴:

ℎ𝑅𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ (𝛼L𝑣 (𝐷𝑝 ) + (1 − 𝛼)L𝑐 (𝐷)) (4)

4.2 Within-Category Regularization
While ℎ𝑅𝐴 minimizes the category misclassification loss over the
rule-based augmented data, minimizing over all counterfactual
perturbations𝑋 ′ ∈ 𝛿 𝑗 (𝑋 ) for a given rule 𝑝 ( 𝑗) = 𝑘 can be computa-
tionally expensive. However, minimizing the misclassification loss
over a random sample of 𝛿 𝑗 (𝑋 ) can be less effective. To optimize
for robustness in a principled sample efficient manner, we propose
to regularize by minimizing, for each sample 𝑋 ′, the upper bound
of the difference between within-category output logits 𝑧 (𝑋 ′, 𝑦)
and the observed output 𝑦 logit which belonged to category 𝑘 . By
lowering this upper bound of difference between within-category
logits and the observed output, we train the model to treat all items
within a category as more likely than items outside the category.We
now formally define this Within-Category Regularization (WCR)
loss.

Definition 4.2. Within-Category Regularization Loss: For an
example (𝑋,𝑌 ) ∈ 𝐷𝑝 , following a rule 𝑝 ( 𝑗) = 𝑘 , such that ∃𝑥 ∈ 𝑋 :
𝑗 ∈ 𝑓𝐼 (𝑥) and ∃𝑦 ∈ 𝑌 : 𝑘 ∈ 𝑓𝑂 (𝑦) and𝑋 ′ ∈ 𝛿 𝑗 (𝑋 ); if 𝑧 (𝑋,𝑦) denotes
the logits of ℎ(𝑋 ) for 𝑦, and Y𝑘 = {𝑦′ ∈ Y|𝑘 ∈ 𝑓𝑂 (𝑦′)}, then the
within-category regularization loss is given by

L𝑟 (𝑋,𝑋 ′, 𝑦) =𝑚𝑎𝑥 (0,𝑚𝑎𝑥𝑦′∈Y𝑘
(𝑧 (𝑋,𝑦) − 𝑧 (𝑋 ′,𝑦′) )) (5)

The expectation of L𝑟 over all examples (𝑋,𝑌 ) ∈ 𝐷𝑝 and all
rules of the form 𝑝 ( 𝑗) = 𝑘 with 𝑋 ′ sampled from 𝛿 𝑗 (𝑋 ) and 𝑦

sampled from𝑌∩Y𝑘 , give us the Rule-basedAugmentation -Within-
Category Regularization loss (RA-WCR)

L𝑎𝑟 (𝐷𝑝 ) = E
(𝑋,𝑌 ) ∈𝐷𝑝 ,( 𝑗,𝑘) :𝑝 ( 𝑗)=𝑘
𝑋 ′∼𝛿 𝑗 (𝑋 ),𝑦∼𝑌∩Y𝑘

L𝑟 (𝑋,𝑋 ′, 𝑦) (6)

Our approach is related to multiple lines of prior work. For exam-
ple, interval bounded propagation [16] minimizes the upper bound
of the output logits for inputs perturbed within 𝜖 distance in a 𝑙∞
norm-bounded neighborhood. In our case, instead of perturbations
defined in the 𝑙∞ norm bounded neighborhood, we consider the
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set of within-category output classes. This also bares some similar-
ity to the intuition behind distillation [22], logit pairing [28] and
multi-task modeling [18] techniques. We adopt this technique as it
smoothens the loss over a neighborhood of items within an output
category instead of a strict cross-entropy category loss. A summary
of the steps in RA-WCR is shown in Algorithm 1.

Algorithm 1 Rule-based Augmentation and Within-Category Reg-
ularization (RA-WCR)
1: Input: Dataset 𝐷 , categories of recommended items (𝐶𝑂 ) and

input items 𝐶𝐼 , and domain specific mapping 𝑝 : 𝐶𝐼 → 𝐶𝑂
2: for all (𝑋,𝑌 ) ∈ 𝐷 do
3: if (𝑋,𝑌 ) ∈ 𝐷𝑝 : 𝑝 ( 𝑗) = 𝑘 then
4: Sample perturbations 𝑋 ′ ∼ 𝛿 𝑗 (𝑋 ), 𝑦 ∼ 𝑌 ∩ Y𝑘

5: Backpropagate 𝛼L𝑎𝑟 over samples of (𝑋 ′, 𝑦)
6: end if
7: Back-propagate (1 − 𝛼)L𝑐

8: end for

4.3 Metrics
To build the neural recommender models that follow domain rules,
we regularize the model such that within-category loss (6) is mini-
mized. We evaluate improvement in robustness using the following
distance metric between inputs.

Definition 4.3. RobustnessDistance:Given all rules of the form
𝑝 ( 𝑗) = 𝑘 , and the subset of the dataset 𝐷 covered by them: 𝐷𝑝 ,
robustness distance is measured as the average of the minimum
categorical distance 𝑑𝑐 between input categories 𝑗 and 𝑗 ′, where
𝑥 : 𝑗 ∈ 𝑓𝐼 (𝑥) and a single item perturbation 𝑥 ′ ∈ 𝑆𝑘 (𝑋 ) : 𝑗 ′ ∈ 𝑓𝐼 (𝑥 ′)
that leads to 𝑘 being removed from the set of perturbed output
categories 𝑂 (𝑋 ′).

𝑂 (𝑋 ′) = {𝑓𝑂 (𝑦′) : ∀𝑦′ ∈ ℎ(𝑋 ′)} (7)
𝑆𝑘 (𝑋 ) = {𝑥 ′ |𝑋 ′ = 𝑥 ′ ∪ 𝑋 \ 𝑥 ∧ 𝑥 ∈ 𝑋 ∧ 𝑘 ∉ 𝑂 (𝑋 ′)} (8)
𝑑𝑟𝑜𝑏𝑢𝑠𝑡 = E(𝑋,𝑌 ) ∈𝐷𝑝

[ 𝑚𝑖𝑛
𝑗 ∈𝑓𝐼 (𝑥), 𝑗 ′∈𝑓𝐼 (𝑥 ′)

𝑥 ∈𝑋,𝑝 ( 𝑗)=𝑘,𝑥 ′∈𝑆𝑘 (𝑋 )

(𝑑𝑐 ( 𝑗, 𝑗 ′))] (9)

Using this, we can essentially answer the question, “Does the model
follow the domain specific mapping between input and output
categories?”. For instance, consider the medical recommendation
task where categorical distance 𝑑𝑐 between inputs is defined as the
distance between nodes of the ICD-9 diagnostic ontology tree. Here,
if the robustness distance 𝑑𝑟𝑜𝑏𝑢𝑠𝑡 ≥ 2 for a recommender model,
then we know that for the output category 𝑘 to change, we need
to perturb to an input 𝑥 ′ in a different category, 𝑗 ∉ 𝑓𝐼 (𝑥 ′) (sibling
nodes in a tree are at a distance of 2). Additionally, we continue to
evaluate the change in the Jaccard similarity metric, F1 score and
Precision-Recall Area under the curve (AUC) metric, Normalized
Discounted Cumulative Gain on 100 relevant items (NDCG) [46]
on the output classification task on the original held-out test data
and also the new category classification task for the augmented
within-category perturbation test data. In the next section, we will
instantiate the categories: 𝐶𝐼 ,𝐶𝑂 , mappings: 𝑓𝐼 , 𝑝, 𝑓𝑂 for 3 domains

of recommender systems. The ability to instantiate these finite
category mappings based on the domain is one of the advantages
of our hybrid framework.

5 DOMAIN-SPECIFIC INSTANTIATION
In this section, we will explain how the methodology described can
be mapped to each of the three domains. All examples are intended
to test the usefulness of our framework, but the method should be
adapted by practitioners and tested by domain experts for their needs.
As shown in Table 1, for the domains and rules we consider (Table
2), the rules do not suffer from low coverage (|𝐷𝑝 | ≪ |𝐷 |) and can
be used to augment and regularize.

Dataset Total Rules Applicable Rules Violated
MIMIC-III 15,016 14,807 2,530
MovieLens 162,541 162,541 0
Last.fm 584,897 505,216 167

Table 1: Summary of total number of samples, samples
where categorical rules are applicable and where they are
violated in the observational datasets

For each of these domains, we define the current state-of-the-art
model as Baseline. As our framework incorporates more informa-
tion through robust domain specific mappings through counter-
factual augmented data, we also developed additional baselines
that used these priors as input features. Specifically, we augmented
categorical embeddings of each input to form the Baseline+Cat
model. In this baseline, no expert validation information is pro-
vided, but the category embedding is explicitly provided. We also
augmented the embeddings of the applicable rule-based output
category 𝑘 : 𝑝 ( 𝑗) = 𝑘 as an input to the model to form the Base-
line+Mapped model. This trains the model to pay attention to the
mapped output category and minimize category misclassification.
Finally, we instantiate our models Baseline RA, which modifies the
baseline with Rule-based Augmentation (Eq. 2) and Baseline RA-
WCR, which uses Rule-based Augmentation and Within-Category
Regularization (Eq. 6). We set 𝛼 = 0.2 after cross-validation.

5.1 Medication Recommendation
We follow the MIMIC-III medication recommendation task as per
[50], and the domain specific mappings 𝑝 are obtained from [61]
where medical experts validated a statistical table based on pairwise
mutual information scores of co-occurrences between diagnostic
𝑥 (ICD-9) and medication 𝑦 (ATC) codes. These validated tables
are segmented based on the age and gender of Austrian patients.
Note that this dataset is different from the MIMIC-III dataset used
in our evaluation. Hence, we use only the pairs of ICD-9: 𝑗 , ATC
categories: 𝑘 that are expert validated 𝑝 , but not any other statistical
information from this study. A total of unique 349 pairs of ATC
and ICD-9 Level 2 codes were deemed to be valid by the experts;
958 unique pairs if we break down by age and gender forms our
domain specific mapping 𝑝 . Age is bracketed into 3 ranges based on
year of birth (1949-68, 1969-88, 1989-2008) and gender is considered
to be binary (male, female). The categorical distance 𝑑𝑐 used to
define the robustness distance is given by the path distance between
ICD-9 codes in the ICD-9 ontology tree. We use these validated
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Dataset 𝑥 𝑦 𝐶𝐼 𝐶𝑂 𝑝 𝑑𝑐

MIMIC-III ICD ATC ICD-Tree Parent Nodes ATC-Tree Parent Nodes Expert-Defined Tree Node Distance
MovieLens Movie Movie Movie Tag Movie Tag Identity Tag Score Difference
Last.fm Song Song Genre, artist type, era Genre, artist type, era Identity Hamming Distance

Table 2: Instantiations of recommender systems into our hybrid framework

pairs to generate perturbations in our existing dataset as shown in
Algorithm 1.

5.1.1 Baseline. We use the current state-of-the-art for the medi-
cation recommendation task on MIMIC-III dataset as the Baseline
- G-BERT [50]. This model uses graph embeddings based on the
ontology of the ATC and ICD-9 codes. The model initially pre-trains
the embeddings on the single-visit data using self-supervised learn-
ing, similar to BERT [11]. The graph embeddings are learnt using
the Graph Attention technique [57], so as to learn hierarchical
embeddings for each of the diagnostic and medication codes.

5.2 Movie Recommendation
In the MovieLens dataset [19], each movie 𝑥 is tagged with user
generated tags 𝑗 ∈ 𝑓𝐼 (𝑥), which illustrate different aspects like
violence, thought-provoking, realistic, etc. We demonstrate the
utility of our framework using an identity mapping 𝑝 ( 𝑗) = 𝑘, 𝑗 =

𝑘 between movie tags in our analysis as shown in Algorithm 1.
Colloquially, this means that if we see a user who has a history𝑋 of
watching a specific category of movies, perturbing their history to a
movie within the same category𝑋 ′ ∈ 𝛿 𝑗 (𝑋 ), should not completely
drift the category of movies recommended away from that said
category 𝑗 . We measure categorical distance 𝑑𝑐 using the absolute
difference of movie tag relevance scores.

We would like to point out that the identity mapping 𝑝 we have
used is illustrative and more specific categorical rules could po-
tentially help solve nuanced problems in recommendations, e.g.,
violent movies to children [20] or polarizing content with feedback
loops [48]. To circumvent these pitfalls, lists of non-recommendable
movies and simple human written rules are often applied. How-
ever, such rule-based post-processing approaches are often limited
and there is an opportunity for these rules to be generalized over
counterfactual data. Alternately, imposing rules on larger genres of
movies like Romance, Crime is plausible using our methodology.

5.2.1 Baseline. As is common inMovieLens recommendation tasks,
we consider the movies where the user has given a star rating of 4
or 5 to be positives, while the rest are negative. In addition to the
movie’s id and category, we use the historical ratings provided by
the user on movies and their categories to predict whether the given
movie should be recommended or not (star rating of 4 or 5). We
use the baseline that is currently high-ranking for the MovieLens
recommendation task, Deep Interest Networks (DIN) [69].

5.3 Music Recommendation
The music recommendation task is taken up on the Million Song
dataset from Last.fm [54]. Here too, the task is to predict the rec-
ommendation scores of songs 𝑌 based on the user history 𝑋 . For
each of the 502,216 songs, genres and tags associated to them are
publicly available in semantic ontology databases. We specifically
cross reference the songs and artists in the Last.fm dataset with

Model Jaccard F1 PR-AUC

O
rig

in
al

G-Bert 0.3679 ±0.01 0.5281 ±0.03 0.6212 ±0.03
G-Bert+Cat 0.3564 ±0.02 0.5203 ±0.04 0.6146 ±0.03
G-Bert+Mapped 0.3680 ±0.01 0.5299 ±0.03 0.6230 ±0.02
G-Bert RA 0.3883 ±0.02 0.5788 ±0.02 0.6541 ±0.01
G-Bert RA-WCR 0.4300 ±0.01 0.5967 ±0.01 0.6775 ±0.02

A
ug

m
en
te
d G-Bert 0.3677 ±0.03 0.5281 ±0.02 0.6199 ±0.00

G-Bert+Cat 0.3301 ±0.03 0.5102 ±0.01 0.5952 ±0.01
G-Bert+Mapped 0.3573 ±0.01 0.5249 ±0.02 0.6084 ±0.02
G-Bert RA 0.3723 ±0.02 0.5483 ±0.02 0.6343 ±0.01
G-Bert RA-WCR 0.4033 ±0.01 0.5699 ±0.02 0.6596 ±0.02

Table 3: Our RA-WCR model improves accuracy metrics of
G-BERTon theMIMIC-IIImedication recommendation task
for the Original dataset and the category classification task
for the within-category Augmented dataset

DBPedia [1] to extract the tuple of the artist’s genre, song type and
date of release as the category of the song 𝑗 . Similar to the movie
tag space, we generate perturbations in the songs that belong to
the same song type, era (in decades) and artist’s genre in each of
the user history logs. We expect that such perturbations will not
have an impact on the ⟨song type, era and genre of the artist⟩: 𝑘
recommended as shown in Algorithm 1. Here too, the domain spe-
cific mapping 𝑝 is an identity mapping. To evaluate the categorical
distance 𝑑𝑐 required to measure robustness, we use the hamming
distance between the songs’ tuples of ⟨song type, era, artist genre⟩.

5.3.1 Baseline. The baseline used is the current state-of-the-art,
EASE, which uses shallow autoencoders [53] over the user history.
By enforcing that the diagonal of the weight matrix to be zero, to
avoid collapse to the trivial identity function, they learn the weights
that capture the similarity between songs.

6 EVALUATION
In this section, we evaluate our methodology on all three domains
and five model structures from Section 5. For each domain, we study
the impact of our method along multiple dimensions to confirm our
hypothesis of whether it can improve accuracy (§6.1) and within-
category concordance (§6.2). We further perform fine-grained eval-
uations to understand the source of the changes in accuracy and
robustness by coverage, types of rules and popularity (§6.3). We
use leave-one-out train/test splits for 10-fold cross-validation and
report mean and standard deviation of accuracy and robustness,
where the folds are generated based on equal partitioning of user
IDs.

6.1 Accuracy
To test if we improve accuracy on the original dataset, we evaluate
overall accuracy metrics in Tables 3, 4 and 5. For the medication
recommendation task as shown in Table 3, in the MIMIC-III diag-
nostic code classification task we improve F1-score by 12.9% with
similar gains in Jaccard coefficient and PR-AUC and we improve
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Model AUC (original) AUC (augmented)
DIN 0.7348 ±0.0034 0.7044 ±0.0021
DIN+Cat 0.7136 ±0.0017 0.6960 ±0.0076
DIN+Mapped 0.7236 ±0.0005 0.7057 ±0.0035
DIN RA 0.7349 ±0.0002 0.7112 ±0.0025
DIN RA-WCR 0.7351 ±0.0002 0.7205 ±0.0028

Table 4: Our regularized version of DIN with Dice [69] im-
proves the AUC for the movie recommendation task on the
original MovieLens 20M dataset and the movie tag classifi-
cation task on the augmented dataset)

Model NDCG (original) NDCG (augmented)
EASE 0.389 ±0.002 0.312 ±0.003
EASE+Cat 0.382 ±0.003 0.309 ±0.001
EASE+Mapped 0.389 ±0.002 0.312 ±0.003
EASE RA 0.389 ±0.001 0.314 ±0.001
EASE RA-WCR 0.394 ±0.002 0.317 ±0.002

Table 5: Our regularized version of EASE for the Last.fmmil-
lion song dataset improves the (Normalized Discounted Cu-
mulative Gain) NDCG on 100 most relevant songs for both
the original test data and the augmented test dataset.

F1-score by 7.9% on the medicine category classification task over
the augmented dataset which contains counterfactual scenarios
of in-category diagnostic codes, thereby increasing adherence to
diagnostic-medication category mappings. As shown in Table 4,
in the MovieLens dataset, we improve AUC by 0.04% in the movie
recommendation task and improve AUC by 2.2% for movie tag clas-
sification on the augmented dataset. In the Last.fm dataset, we im-
prove NDCG@100 by 1.3% and 1.6% on both the song and category
classification tasks on the original and augmented datasets respec-
tively. Across all three domains we observe clear improvements in
accuracy not just on category classification for augmented data but
also on recommendations in the original data distribution. Further,
these improvements do not merely come from making the category
information available, but how they are used through rule-based
augmentation. This suggests both that the domain specific rules are
valuable and regularizing models for robustness aligned with these
rules is an effective means to generalize over both observational and
counterfactual scenarios.

6.2 Model Sensitivity
We now test: “Does our method effectively increase adherence to
the domain experts’ mappings?” To measure if neural recommender
models follow domain-specific rules, we evaluate the robustness
distance as defined in Definition 4.3, limited to the subset of the data
specified by the mappings. To continue the ICD-9 code based medi-
cation recommendation example, the changes would be quantified
by the edge distance in the ICD-9 code ontology required to change
the output ATC medication code. As shown in Table 6, our G-BERT
RA-WCR model achieves a robustness distance 𝑑𝑟𝑜𝑏𝑢𝑠𝑡 = 2.4 ≥ 2,
suggesting that the model on average follows the expert-defined
rules for counterfactuals near observed examples. Having a robust-
ness distance greater than or equal to 2, implies that on average for
any change in the recommended medication category, the model

expects that the input diagnostic code category should have also
changed.

In the MovieLens dataset (Table 6), this distance is quantified by
the minimum change in the tag relevance score of the perturbed
movie, before which the recommended movie has no relevance to
the aforementioned tag. The relevance scores range from 0 to 1 and a
higher robustness distance indicates invariance to changes within a
movie tag (violence, drama, etc). Our model DIN RA-WCR improves
the robustness distance by 2.1× as compared to the baseline DIN. It
shows that on average, the relevance of a movie’s tag in the user
history has to decrease by 0.35 before we find that the recommended
movie does not have that tag (relevance = 0). This indicates our
model is less prone to spurious changes in recommendation tags
with small changes in the movie’s tag relevance.

In the Last.fm Million Songs dataset, the robustness distance is
specified by the average of minimum Hamming distance between
the tuples mentioning the era, song type and artist genre between
observed songs and their within-category substitutes, for which
there is a change in the output’s tuple. Our model EASE (RA-WCR)
increases robustness distance to 𝑑𝑟𝑜𝑏𝑢𝑠𝑡 = 1.2 which more signifi-
cantly, crosses the threshold of 1. This implies that for a change
in the recommended song’s tuple of <era, song type, artist genre>,
there needs to be on average one change (𝑑𝑟𝑜𝑏𝑢𝑠𝑡 > 1) in the input
tuple parameters, thus avoiding spurious output category changes.

6.3 Dissecting the gains
To understandwhere the gains in accuracy and robustness originate,
we analyze slices of data and understand the source of the increase.

Coverage: In Figure 2, we slice the datasets into 2 subsets (𝐷𝑝

and 𝐷 \ 𝐷𝑝 ) based on whether they are covered by the expert
mappings or not. This separation is obtained in the medical dataset
by augmenting data using 30% of the diagnostic code categories
covered by the rules 𝑝 . In the Movie and songs datasets too, we
augmented the training dataset with counterfactual with-category
perturbations on 30% of the categories and split the original test set
into two subsets, one containing the augmented categories denoted
as “covered” and the rest as “uncovered”. We show in Figure 2 that
the improvement in accuracy of the covered subset is higher than
the uncovered subset. Still, for the uncovered subset, there is no
degradation in accuracy. The change in accuracy and robustness
is measured with respect to each of the unmodified state-of-the-
art baselines. Further, as the coverage of the rules increases, there
is a corresponding increase in accuracy and robustness as shown in
Figure 3. The numbers presented are averaged over 10 random
samples of rules that cover a given coverage bracket for the medical
recommendation task.

Domain Specific Rules vs Co-occurrence In this analysis,
we explore which domain specific rules contribute to the highest
gain in accuracy and robustness. This is to test our hypothesis
that domain specific categorical rules that are not evident in the
observed data are critical if we expect the model to generalize on
counterfactual inputs. We bucketize the rules 𝑝 based on a measure
of co-occurrence: Normalized Mutual Information (NMI) score 𝜌
between ( 𝑗, 𝑘) : 𝑗 ∈ 𝐶𝐼 , 𝑘 ∈ 𝐶𝑂 ∧ 𝑝 ( 𝑗) = 𝑘 as observed in the
dataset 𝐷 . This allows us to differentiate between rules which are
already supported by the observed data through sampling biases
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Model Version Baseline: G-BERT (MIMIC-III) Baseline=DIN (MovieLens) Baseline=EASE (Last.fm MSD)
𝑑𝑟𝑜𝑏𝑢𝑠𝑡 (ICD-9 tree distance) 𝑑𝑟𝑜𝑏𝑢𝑠𝑡 (Tag Score Difference) 𝑑𝑟𝑜𝑏𝑢𝑠𝑡 (Hamming Distance)

Baseline 1.3 (1.0, 1.6) 0.11 (0.10, 0.12) 0.20 (0.12, 0.28)
Baseline+Cat 1.1 (1.0, 1.2) 0.13 (0.10, 0.16) 0.28 (0.23, 0.33)
Baseline+Mapped 1.2 (1.0, 1.4) 0.15 (0.11, 0.19) 0.31 (0.29, 0.33)
RA 1.7 (1.5, 1.9) 0.21 (0.18, 0.24) 0.42 (0.35, 0.49)
RA-WCR 2.4 (2.1, 2.7) 0.35 (0.32, 0.38) 1.20 (1.11, 1.29)

Table 6: Our method considerably increases the mean robustness distance (± standard deviation in brackets - see Def. 4.3) in
medication, movie and song domains.
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Figure 2: Our method improves robustness (bars are mean,
with error bars showing one standard deviation) without de-
grading accuracy, and improves accuracy themost for subset
of data covered by the domain specific mappings.
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Figure 3: Our G-BERT (RA-WCR) model steadily improves
F1 score and robustness distance as and when new medical
rules are used to augment the dataset.

versus rules which are not. We bucketize the categorical mappings
into five quintiles based on the NMI score in Figure 4, and show that
robustness gains obtained through rules which have low co-occurrence
is higher than through rules which already have high co-occurrence
in the observed dataset.

Specifically, in the MIMIC-III dataset, we see significant gains
in accuracy in addition to robustness when augmenting data using
rules defined over medication and diagnosis categories with low
NMI scores. This matches our hypothesis that there is value in
obeying these expert-defined categorical rules. In the movie dataset,
we bucketize based on the movie tag we augment the dataset by. We
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Figure 4: Our RA-WCR approach demonstrates more gain in
sliced accuracy and robustness when augmentation is done
through rules which have lower normalized mutual infor-
mation score in the observed data across 3 domains

see in Figure 4, that augmenting data for rules based on movie tags
with high co-occurrence increases accuracy, whereas movie tags with
low co-occurrence increases robustness on the original dataset. This
means that we improve robustness for niche movie tags with low co-
occurrence like “sci-fi animation”. A similar trend is observed with
co-occurrence over music categorical rules in the Last.fm dataset.

Effect onPopular Items: In theMovieLens and Last.fm datasets,
by following categorical rules, our robust models also tend to recom-
mend popular items less frequently than the unmodified baselines,
and rely more on the relevance to the tags than popularity in the
observed dataset. In MovieLens, popular items (top-10 percentile)
recommended decreased by 32.3% in DIN (RA-WCR) as compared
to DIN. Similarly, in Last.fm, the number of times one of the songs
from top-10 percentile were recommended decreased by 23.8% in
EASE (RA-WCR) as compared to EASE.

7 CONCLUSION
In this paper we have laid out a novel framework for robustness
and domain-specific concordance in recommender systems, based
on within-category perturbations and expert-defined relations. We
have proposed regularization based methods for using these expert-
defined rules during training and demonstrated across three dif-
ferent domains that this improves not only the robustness of the
recommenders, but also their accuracy. We believe this provides a
solid foundation for further work in the community on how to en-
able domain experts to encode their expertise and define robustness
based on that expertise in neural recommender models.
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