
7

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids
Using a GPU

PANKAJ K. AGARWAL, Duke University
ALEX BEUTEL, Carnegie Mellon University
THOMAS MØLHAVE, SCALGO USA

With modern focus on remote sensing technology, such as LiDAR, the amount of spatial data, in the form
of massive point clouds, has increased dramatically. Furthermore, repeated surveys of the same areas are
becoming more common. This trend will only increase as topographic changes prompt surveys over already
scanned areas, in which case we obtain large spatiotemporal datasets.

An initial step in the analysis of such spatial data is to create a digital elevation model representing the
terrain, possibly over time. In the case of spatial (spatiotemporal, respectively) datasets, these models often
represent elevation on a 2D (3D, respectively) grid. This involves interpolating the elevation of LiDAR points
on these grid points.

In this article, we show how to efficiently perform natural neighbor interpolation over a 2D and 3D grid.
Using a graphics processing unit (GPU), we describe different algorithms to attain speed and GPU-memory
tradeoffs. Our experimental results demonstrate that our algorithms not only are significantly faster than
earlier ones but also scale to much bigger datasets that previous algorithms were unable to handle.

Categories and Subject Descriptors: D.2 [Software]: Software Engineering; F.2.2 [Nonnumerical
Algorithms and Problems]: Geometrical Problems and Computations; H.2.8 [Database Management]:
Database Applications—Data mining, Image databases, Spatial databases and GIS

General Terms: Performance, Algorithms

Additional Key Words and Phrases: LIDAR, massive data, GIS, natural neighbor interpolation, GPU

ACM Reference Format:
Pankaj K. Agarwal, Alex Beutel, and Thomas Mølhave. 2016. TerraNNI: Natural neighbor interpolation on
2d and 3d grids using a GPU. ACM Trans. Spatial Algorithms Syst. 2, 2, Article 7 (June 2016), 31 pages.
DOI: http://dx.doi.org/10.1145/2786757

1. INTRODUCTION

With advances in sensing and mapping technologies, big geospatial datasets are be-
ing collected and regularly updated by government agencies at all levels, as well as
by private companies, at an unprecedented rate, and the demand for these datasets
is increasing. For example, the U.S. Geological Survey (USGS) produces the regu-
larly updated National Elevation Dataset (NED), which includes a national 1/3-arc-
second (∼10 meter) digital elevation model (DEM) as well as 1/9-arc-second (∼3 meter)

This work is supported by the NSF under grants CNS-05-40347, IIS-07-13498, CCF-09-40671, and CCF-
1012254; by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452; by U.S. Army ERDC-TEC grant
W9132V-11-C-0003; by NIH grant 1P50-GM-08183-01; and by a grant from the U.S.-Israel Binational Science
Foundation.
Authors’ addresses: P. K. Agarwal, Duke University, Box 90129, Durham NC 27708-0129; A. Beutel, 5000
Forbes Avenue, Carnegie Mellon University, Pittsburgh, PA 15232; T. Mølhave, SCALGO, Aabogade 40, 8200
Aarhus N, Denmark.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2374-0353/2016/06-ART7 $15.00
DOI: http://dx.doi.org/10.1145/2786757

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

http://dx.doi.org/10.1145/2786757
http://dx.doi.org/10.1145/2786757

7:2 P. K. Agarwal et al.

Fig. 1. (a) Grid DEM constructed from LiDAR data over a region in Afghanistan (data source: Army Research
Office); trees are clearly visible. (b,c) Jockey’s Ridge State Park sand dune in Nags Head, NC.

Fig. 2. (b) A flood risk mapping of the island of Mandø in Denmark, using the 90m grid and (c) the same
using the 2m grid; both figures are screenshots of a custom map application built on Google Maps.

resolution DEMs for parts of the United States where there is sufficient coverage. Sim-
ilarly, the coastal region of North Carolina has been mapped every 1 to 2 years since
the mid-1990s [NOAA 2014]. Figures 1(b) and 1(c) show a spatiotemporal model of a
portion of this region constructed from the dataset. Such datasets provide tremendous
opportunities for a wide range of commercial, scientific, and military applications. For
instance, unmanned aerial vehicles can survey an area over a certain time period and
the resulting spatiotemporal terrain elevation data can be used to detect the location
of new buildings, machinery, or vegetation. On a larger scale, they can be used to of-
fer interesting insights into understanding terrain dynamics. For example, there has
been much interest on studying the movement of sand dunes and erosion at the North
Carolina coast [Mitasova et al. 2005].

It is essential for many applications to exploit the high-resolution datasets since
small features may have a large impact on the output. For instance, it is vital that
dikes and other features are present in datasets used for hydrological modeling, but
these features are often relatively small and unlikely to appear if the resolution is
low [Mølhave et al. 2010]. An example of this can be seen in a simple (nontemporal) flood
mapping application. Figures 2(b) and 2(c) show the result of the flood risk mapping for
the island of Mandø in the Wadden-Sea off the west coast of Denmark. The island has an
approximately 5-meter-tall perimeter dike that protects it from the sea. Because of the

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:3

small width of the perimeter dike, this feature is not present in low- or midresolution
grids. Thus, when flood maps are constructed on coarse grids for a water level of 2
meters, it looks as if most of the island will be underwater. See Figure 2(b) for an
example using a 90m grid (the SRTM grid available from NASA [Farr et al. 2007]). The
same computation performed on a 2m-resolution grid, shown in Figure 2(c), correctly
finds that the dikes, now present in the terrain model, block the water from entering
the lower-lying areas inside the perimeter.

Capitalizing on the opportunities presented by high-resolution datasets and trans-
forming the massive amount of spatial and spatiotemporal topographic data into useful
information requires that several algorithmic challenges be addressed. To begin with,
the scattered point set S generated by LiDAR cannot be used directly by many GIS
algorithms. They instead operate on a digital elevation model (DEM). Because of its
simplicity and efficiency, the most widely used DEM is a 2D uniform grid in which
an elevation value is stored at each cell. A 2D point cloud can be seen as a set S of
n (arbitrary) points in R2 with an associated elevation function h : S → R. Thus, to
construct a grid DEM, h has to be extended via interpolation to a uniform grid G ⊂ R2

at the desired resolution.
For spatiotemporal data, the notion of a 2D uniform grid translates into a 3D grid

with time representing the third dimension. One has to extend the elevation measured
by LiDAR at the points of S via interpolation to a uniform grid Q ⊂ R3 of the desired
resolution; the interpolation is performed in both time and space. We note that the
need to interpolate a spatiotemporal dataset on a uniform grid arises in a variety of
applications. For example, one may want to interpolate data generated by a sensor
network deployed over a wide area [Ghosh et al. 2012].

There is extensive work on statistical modeling of spatial and spatiotemporal data
in many disciplines, including geostatistics, environmental sciences, GIS, atmospheric
science, and biomedical engineering. It is beyond the scope of this article to discuss
these methods here. We refer to Kyriakidis and Journel [1999], Mateu et al. [2003] and
Wikle et al. [1998] for reviews of many such results. In the context of GIS, interpola-
tion methods based on kriging, inverse distance weighting, shape functions, random
Markov fields, and splines have been proposed; see Mitasova et al. [1995], Shekhar
and Xiong [2008], Li and Revesz [2002], and Miller [1997] and references therein.
Although sophisticated spline-based methods (e.g., regularized splines with tension
(RST)) and kriging produce high-quality output, especially when data is sparse, they
are computationally expensive and not scalable because of their usage of nontrivial
polynomials. On the other hand, simple methods such as constructing triangulation
on input points in R3 [Li and Revesz 2002] and linearly interpolating the elevation on
grid points don’t produce a smooth surface, especially in the areas where the data is
relatively sparse. The resulting DEM can appear jagged both when viewed directly and
in derived products, such as contour maps or river networks.

In this article, we use the well-known natural neighbor interpolation (NNI) strat-
egy [Sibson 1981]. Given a finite set S of points in Rk, a height function h : S → R can
be extended to the entire Rk using natural neighbor interpolation. In particular, for a
point q ∈ Rk,

h(q) =
∑
p∈S

wp(q)h(p), (1)

where wp(q) ∈ [0, 1] is the fractional volume of VorS∪{q}(q) that belongs to VorS(p) (see
Figure 3 for a 2D example), that is,

wp(q) = Vol(VorS(p) ∩ VorS∪{q}(q))
Vol(VorS∪{q}(q))

, (2)

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:4 P. K. Agarwal et al.

Fig. 3. (a) Voronoi diagram Vor(S) of a set S of points. (b) Natural neighbor interpolation for a point set S
and query point q in R2. The shaded cell is VorS∪{q}(q), and each color denotes the area stolen from each cell
of Vor(S).

where VorA(z) denotes the Voronoi cell of the point z ∈ A. NNI is known to have several
nice properties. For example, it is local, using only sample points that surround a
query point; it does not introduce new critical points; and the interpolated surface
passes through input points and is smooth everywhere except at input points [Sibson
1981; Watson 1992]. Because of these desirable properties, NNI is widely used in many
fields [Boissonnat and Cazals 2000; Owen 1992; Sukumar et al. 1998].

Although NNI is more efficient than RST and other similar interpolation methods,
its traditional implementations (both 2D and spatiotemporal versions) are significantly
slower than linear interpolation and thus not widely used for very large datasets.

There are several reasons that NNI is computationally challenging. First, the size of
the Voronoi diagram in 3D can be quadratic in the worst case even for the Euclidean
metric [de Berg et al. 1997]. As mentioned later, for spatiotemporal data, we are in-
terested in computing the Voronoi diagram under more general metrics. Even if the
size of the Voronoi diagram is near linear for realistic datasets [Attali and Boissonnat
2004], computing it is still expensive, especially on large datasets that do not fit in
main memory. Since S cannot be assumed to be in the general position, robust imple-
mentations must take great care to handle cases such as point duplicates and groups
of multiple points on the same plane/sphere; the existing implementations of Voronoi
diagram construction such as Qhull [Barber et al. 1996] are slow on degenerate inputs.
Furthermore, performing NNI involves computing the intersection of two polyhedra
and the volume of this intersection. Hemsley [2009] has implemented NNI in 3D under
the Euclidean metric, but the implementation is not scalable; see Section 6 for more
details. We are unaware of any robust implementation of NNI for points in R3 that can
handle large datasets.

To attain significant speedup in the NNI computation, we exploit the graphics pro-
cessing units (GPUs) available on modern PCs. Although originally designed for quickly
rendering 3D geometric scenes on an image plane (screen) and extensively used in
video games, they can be regarded as massively parallel vector processors suitable
for general-purpose computing. Known as general-purpose GPUs (GPGPUs), their
tremendous computational power and memory bandwidth make them attractive for
applications far beyond the original goal of rendering complex 3D scenes. As GPUs

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:5

have become more flexible and programmable (e.g., NVIDIA’s CUDA [NVIDIA 2010]
library), they have been used for a wide range of applications, for example, geometric
computing, robotic collision detection, database systems, fluid dynamics, and solving
sparse linear systems. See Owens et al. [2007] for a recent survey. In the context of
grid DEM construction, Fan et al. [2005] and Park et al. [2006] have described a GPU-
based algorithm for NNI; more recently, You and Zhang [2012] described a GPU-based
NNI algorithm using CUDA. Danner et al. [2012] described an algorithm using MPI
and GPU for parallel grid construction across a cluster of machines, focusing on RST
interpolation.

Our contributions. In this article, we present TerraNNI, a simple yet very fast GPU-
based algorithm that, given an input point set S in Rk for k = 2, 3 and a uniform
grid Q in Rk, computes the elevation of all points of Q. Our algorithm can be used to
interpolate any scalar field over a uniform grid in Rk from a set of sample points. For
instance, it can be used to interpolate density in a volumetric dataset.

LiDAR scanners provide dense (high-resolution) point clouds of elevation data at
most locations, but there are gaps. In space, these gaps usually appear at large bodies
of water or human-made objects that have been removed from the point cloud in a
preprocessing step. In time, the gaps appear when surveys fail to cover exactly the
same region as previous surveys. When these gaps are large, it is desirable to label
the corresponding gap cells in the volumetric grid with nodata instead of interpolating
elevation based on points that are very far away. We introduce the notion of the region
of influence for each input point, similar to the one used in α-shapes [Edelsbrunner
and Mücke 1994]. For a grid point q, we use only those points to compute its elevation
whose regions of influence contain q; for spatiotemporal data the region of influence has
a temporal component as well. Our algorithm allows for an almost arbitrary region of
influence; if this region is sufficiently large, then the algorithm computes the standard
NNI.

Euclidean distance may not necessarily be the appropriate function to measure the
distance between two points, especially for spatiotemporal data. We therefore assume
that we have a metric d(·, ·) and compute Voronoi diagrams under this metric. While
computing Voronoi diagrams on the CPU for general metrics is hard, it is relatively
straightforward on a GPU. We also show how the computation of Voronoi diagrams can
be optimized for Euclidean distance using the so-called lifting transform.

TerraNNI for 2D data. Exploiting the fact that we are interpolating elevations at grid
points, TerraNNI uses a clever “blocking” scheme to expedite the computation consider-
ably. In contrast to the algorithm in Fan et al. [2005], which performs NNI interpolation
at ≤ 32 points in one step (or ≤ 128 points depending on hardware properties of the
GPU card), TerraNNI can answer more than 106 NNI queries at grid points in one step.
It exploits CUDA to substantially improve its efficiency by performing the majority of
the computation on the GPU, thereby minimizing the communication between main
and GPU memory.

These techniques lead to an extremely fast algorithm for computing a grid DEM. For
example, TerraNNI computes a grid DEM covering a 600km2 region at 2m resolution
(i.e., ≈ 150 million grid points) from 2 × 109 input points in less than 40 minutes on
a 3GHz Intel Core 2 Duo processer with an NVIDIA GeForce GTX 470 graphics card.
Our CPU-based linear-interpolation algorithm takes more than 5 1/2 hours on the
same PC. Not only is this a significant speedup, but also NNI interpolation produces
a smoother grid DEM than the linear-interpolation method. The more sophisticated
RST-based algorithm takes about 34 hours on the same dataset, even after throwing
away a fraction of the points for efficiency, and the output between NNI and RST-
based interpolations is nearly indistinguishable. Another advantage of our algorithm

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:6 P. K. Agarwal et al.

over linear or RST interpolation is that it can be trivially parallelized, so it could be
implemented easily on a GPU cluster.

TerraNNI for spatiotemporal data. Since GPUs support only 2D color and depth
buffers, we process one 2D slice of Q each step. This involves processing each input
point multiple times. We present three algorithms, which provide tradeoffs between
the number of times each point is processed and the space (on the GPU) used by the
algorithm. We refer to Table I in Section 5 for an overview of the relative performance
of our algorithms.

Our experimental results demonstrate that TerraNNI is both scalable and efficient
on spatiotemporal data. Since big multiyear LiDAR data are not yet publicly available,
we tested the scalability of our algorithm by interpolating synthetic data. TerraNNI
interpolates a 5,000 by 5,000 by 20 grid from a dataset consisting of 1010 input points
spanning 20 years (186GB) in only 5 hours and 17 minutes. Additionally, we tested our
algorithm on a smaller, nonsynthetic dataset consisting of about 20 million data points
spanning 11 years. Our algorithm can interpolate more than 4 × 108 points from a 3D
point cloud of 1010 points in approximately 5 hours. In contrast, Interpolate3d [Hemsley
2009], an implementation of NNI on the CPU, was unable to handle point clouds larger
than 104 points.

Overview of the article. This article is organized as follows. Section 2 gives a short
introduction to the fundamentals of the GPU model of computation, and Section 3
presents an algorithm for computing Voronoi diagrams, primarily in 2D and 3D. Sec-
tion 4 presents our 2D algorithm, and Section 5 extends the 2D algorithm to 3D. In
Section 6, we discuss our experimental results, exploring the performance and output
quality of our algorithms.

2. GPU MODEL OF COMPUTATION

This section gives a brief overview of the computing primitives of a typical GPU (e.g.,
those that are relevant for our article).

The graphics pipeline. The graphics pipeline is responsible for drawing 3D scenes,
composed of a set � of objects, onto a 2D image plane of pixels as seen from a viewpoint
o. Because of their simplicity and flexibility, � is almost always a set of triangles. For
each pixel π = (x, y), where x, y is a global coordinate, the GPU finds the subset �π ⊆ �
of objects intersected by the ray �oπ . To store the information about the scene, the GPU
efficiently maintains 2D arrays of pixels called buffers. We will use the following two
buffers:

—The depth buffer D stores the distance to the nearest object from o for each pixel π .
Given that pj is the point of intersection for ray �oπ and object ω j ∈ �π , the GPU
calculates and stores D[π] = minω j∈�π

‖opj‖.
—The color buffer C stores the color of the scene as viewed from o. Modern GPUs offer

several options to define C[π] for a pixel π , often conditioned on the value of D[π]. Let
χ j be the color of ω j ∈ �π . We will use the following two options: (1) C[π] is the color
of the foremost object of �π at π . That is, if ωi = arg minω j∈�π

||opj ||, then C[π] = χi.
(2) C[π] = ∑

ω j∈�π
α jχ j , where α j ∈ [0, 1] is a blending parameter. In our application,

χ j will be of the form 2k and χ j
= χ j ′ for all pairs ω j, ω j ′ ∈ �π and we will set α j = 1,
so the blending function will set C[π] to the bitwise-OR of colors of objects in �π .

A pair F = (C, D) is referred to as a frame buffer, and the GPU can store multiple
frame buffers simultaneously (as long as there is enough GPU memory available). One
of these frame buffers is marked as the active frame buffer, and drawing commands
go to the active frame buffer. It is usually clear from the context which frame buffer is

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:7

Fig. 4. Voronoi diagram as the lower envelope of a set of cones. The outer cells of a Voronoi diagram are
infinite, but in this figure their sizes are limited because the cones are truncated.

active. We use the special value ⊥ to denote the default values of the color and depth
buffers. During graphical computations, all frame buffers and their associated color
and depth buffers reside in memory on the graphics card. We let L denote the side
length of the maximum buffer that the GPU can handle.

There are multiple libraries that provide APIs for working with GPU buffers and
for rendering objects to these buffers; popular ones include OpenGL and Microsoft’s
DirectX. We use OpenGL. We also use CUDA, the parallel computing architecture
by NVIDIA [2010], to perform general-purpose computation (not just rendering) di-
rectly on buffers in GPU memory, thereby reducing communication between the GPU
and CPU.

3. COMPUTING VORONOI DIAGRAMS

This section defines a discretized version of the Voronoi diagram, suitable for computing
on a GPU, and presents algorithms for computing it in R2 and R3.

3.1. Voronoi Diagrams

Let S = {p1, . . . , pn} be a set of points in Rk, for k ≥ 1, and let d(·, ·) be a convex distance
function. For a point pi ∈ S, we define its Voronoi cell VorS(pi) with respect to d(·, ·)
to be

VorS(pi) = {a ∈ Rk | d(a, pi) ≤ d(a, pj) 1 ≤ j ≤ n}.
Vor(S) is the subdivision of Rk induced by the Voronoi cells of points in S; see Figure 3.
We will omit the subscript S from VorS(pi) when it is obvious from the context.

We introduce the notion of the region of influence I ⊂ Rk, which is used to limit
the region a point pi ∈ S can influence. We modify the distance function so that the
distance d(pi, p) is infinity for points p outside I + pi. Note that a point p ∈ Rk that
does not lie in I + pi for any pi ∈ S does not belong to the Voronoi cell of any point of S.
This implies that Vor(S) is not a subdivision of the entire set Rk but only of the region
∪p∈S(I + p). For simplicity, we will describe algorithms with the assumption that I is
a disc in 2D and a cylinder in 3D. The algorithms can be modified to handle influence
regions of more general convex shapes.

Vor(S) as a lower envelope. For a point p ∈ Rk, let fp : Rk → R be the function
fp(u) = d(u, p). With a small abuse of notation, we define fi = fpi for 1 ≤ i ≤ n. The
lower envelope f of F = { f1, . . . , fn} is defined as

f (u) = min
1≤i≤n

fi(u).

That is, f (u) is the distance from u to its nearest neighbor in S. Therefore, Vor(S) is a
projection of the graph of f onto Rk; see Figure 4.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:8 P. K. Agarwal et al.

If d(·, ·) is the Euclidean distance, that is,

d(a, b) =
⎛
⎝

k∑
j=1

(aj − bj)2

⎞
⎠

1/2

,

then Vor(S) can be represented as the lower envelope of a family of linear functions us-
ing the so-called lifting transform [de Berg et al. 1997], as follows: let pi = (pi1, . . . , pik)
for 1 ≤ i ≤ n. For a point a = (ai, . . . , ak) ∈ Rk,

arg min
i

fi(a) = arg min
i

f 2
i (a) = arg min

i

k∑
j=1

a2
j − 2aj pij + p2

i j

= arg min
i

k∑
j=1

−2aj pij + p2
i j

= arg min
i

gi(a),

where

gi(a) = −2
k∑

j=1

aj pij +
k∑

j=1

p2
i j .

The projection of the lower envelope of G = {g1, . . . , gn} is therefore identical to that of
F, and the graph of each gi is a hyperplane. As we will see later, working with G is
substantially simpler and more efficient than working with F.

Discretized Voronoi diagram. Let B be an axis-aligned box in Rk. We are interested
in computing a discretized version of Vor(S) inside B, defined later. We discretize B
into a N1 × · · · × Nk uniform k-dimensional grid of voxels. Each voxel is a (tiny) box
and its volume is μ = Vol(B)/(�k

i=1Ni). We use υ̂ to denote the center point of voxel υ.
With a slight abuse of notation, we will also use B to denote this k-dimensional grid of
voxels. For a voxel υ ∈ B, let ϕ(υ, S) denote the point of S that is nearest to υ̂ under
the distance function d(·, ·). If d(υ̂, p) = ∞ for all p ∈ S, then we consider ϕ(υ, S) to
be undefined. We discretize Vor(S) ∩ B by assuming that the entire voxel υ lies in the
Voronoi cell of ϕ(υ, S). For a point pi ∈ S, we define its discretized Voronoi cell as

Vor�(pi) = {υ | ϕ(υ, S) = pi}.
The quantity μ|Vor�(pi)| approximates the volume of Vor(pi) inside B. This approxi-
mation improves as we increase the resolution, that is,

lim
N1,...,Nk→∞

μ|Vor�(pi)| = Vol(Vor(pi) ∩ B).

Vor�(S) is the subdivision of B induced by Vor�(pi) for 1 ≤ i ≤ n; see Figure 5(a). Note
that, as in the continuous case, a voxel whose center does not lie in I + pi, for any
pi ∈ S, does not belong to the discretized Voronoi cell of any point of S.

3.2. Computing Voronoi Diagrams in 2D

We now describe a GPU-based algorithm, which we refer to as GVOR, for computing
Vor�(S) for a point set S ⊂ R2. In R2, B is an N1 × N2 rectangle and each voxel π ∈ B is
a two-dimensional square with side length ρ; we call π a pixel of B. We assume I, the
region of influence, to be a disk of radius r.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:9

Fig. 5. Pixelized Voronoi diagram where d(·, ·) is the Euclidean metric. (a) Vor�(S) for a set of eight points;
(b, c) Vor�

S(3), shown as a slice of B from (a).

Fig. 6. Example of k = 2 using the Euclidean metric and setting I to a disk of radius 5: (a) Discretized
Voronoi diagram Vor�(S) without a truncated d. (b) Discretized Voronoi diagram Vor�(S) with d truncated
to a circular region of influence.

We map the image plane of � of the GPU to B with each pixel of π mapping to a pixel
in the image plane; thus, we do not distinguish between an entry in the color buffer
C[π] and (the center of) the corresponding pixel π ∈ B.1 We use the color buffer to store
Vor�(S) on the GPU by viewing each pixel as a single word (concatenation of R, G, B,
A components). Specifically, if ϕ(π, S) = pi for some pixel π , then the color buffer stores
C[π] = i. If ϕ(π, S) is undefined, the color buffer C[π] contains the uninitialized value
⊥; this happens when π̂ , the center point of π , is outside the region of influence for all
points of S. Figure 6 shows an example of two discretized Voronoi diagrams Vor�(S)
corresponding to different regions of influence (and thus truncations of d).

Convex distance function. If d(·, ·) is a general convex function, we proceed as follows.
For a point p ∈ Rk, let γp denote the graph of the function fp and let � = {γ1, . . . , γn},
where γi = γpi . A point a ∈ R2 is in Vor�(pi) if f (a) = f (ai); that is, the ray from
a in the +z direction hits γi before any other γ ′ ∈ �. In other words, ϕ(π, S) = pi
if γi is the surface seen at π̂ when the set � is viewed from z = −∞. This suggests

1Here we assume that the size of � is larger than that of B, that is, that N1, N2 < L. We describe in Section 4
how to adapt the algorithm if B is larger than �.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:10 P. K. Agarwal et al.

Fig. 7. (a) The triangulation of γi into γ �
i using two triangle strips (m = 2). (b) In the case of the Euclidean

metric, the lifting transform is used to produce a simple γ
�
i .

that we can compute Vor�(S) by rendering the surfaces of � with the viewpoint set
appropriately. However, since GPUs are optimized to render triangles, not an arbitrary
surface, we construct a triangulated surface γ

�
p approximating γp. We use a simple

triangulation that is defined by two integer parameters: k and m. We first compute m
level-set curves (contour lines) at regular height intervals on γi, that is, intersect γi
with m horizontal planes (e.g., dashed circles in Figure 7(a)). Since d(·, ·) is assumed
to be convex, each level set is a convex closed curve, which we approximate by a
convex k-gon, by choosing k points on the curve. We then create triangles between
adjacent k-gons using 2k triangles. The resulting triangulated surface, denoted by γ

�
p ,

is composed of 2km triangles; see Figure 7(a). Let �� = {γ �
1 , . . . , γ

�
n }, where γ

�
i = γ

�
pi .

We can approximate γ
�
p as close to γp as desired by choosing the parameters m and k

appropriately.
To compute Vor�(S), we set the colors of all triangles in γ

�
i to i and render the

triangles of �� onto � using the GPU. We note that after rendering ��, the depth
buffer encodes the distances in the sense that D[π] stores the (approximated) value of
d(π̂ , ϕ(π, S)), the distance from the center of π , to its nearest neighbor in S. C is set to
store the color of the foremost object at π (cf. Section 2).

Euclidean distance function. The number of triangles needed to get a good approxi-
mation γ

�
i of fi can be large, depending on the complexity of d(·, ·) and the desired level

of accuracy, and it can affect the efficiency of the algorithm. For Euclidean distance
functions, much higher accuracy can be obtained with just a few triangles, by using the
lifting transform, that is, working with the functions g1, . . . , gn. Recall that we assume
I to be a disk of radius r. Therefore, the (truncated) surface γi, the graph of function gi
truncated within I, is the planar elliptic region

γi = {(u, gi(u)) | u ∈ R2, ||upi|| ≤ r};
see Figure 7(b). The ellipse γi can be triangulated using a convex k-gon as follows. Let
σ be a regular k-gon in R2 inscribed in the disk of radius r centered at the origin. We
set σi = σ + p∗

i , where p∗
i is the projection of pi on the xy-plane. Lifting σi to hi yields

the surface

γi = {(u, gi(u)) | u ∈ σi}.
For each vertex v of σi, there is a vertex (v, gi(v)) in γi (Figure 7(b)). We can easily
triangulate γi using k triangles, say, by drawing an edge from the center of gi(pi) of γi to

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:11

each vertex of yi. Note that the resulting triangulated surface γ
�
i encodes the function

gi exactly; it only approximates the influence region of pi.

The GVOR(S) procedure. In the context of NNI, each point pi of S is endowed with
height h(pi). We set the color of all triangles of γ

�
i to be h(pi). Thus, for all pixels

π ∈ Vor�(pi), C[π] stores h(pi). The GVOR(S) algorithm returns the frame buffer F =
(C, D); that is, for each pixel π ∈ Vor�(pi), we have its distance to pi (from D) and h(pi)
(from C).

3.3. 3D Voronoi Diagrams

We now extend the previous algorithm to compute Vor�(S) in R3. We view R3 as xyt-
space—x,y being spatial dimension and t being the time axis; each point p = (xp, yp, tp)
is located in a 2D region, with (xp, yp) as its spatial coordinates, and has a time value
tp associated with it. We discretize the box B into an N1 × N2 × N3 uniform 3D grid of
voxels; N3 is the temporal resolution of the grid. As mentioned earlier, we assume the
region of influence I to be a cylinder of radius r in the xy-plane and height 2r along the
t-axis, that is, I = {(x, y, t) | ||(x, y)|| ≤ r, |t| ≤ r}.

Recall from Section 3.1 that the problem of computing Vor�(S) can be phrased
as that of rendering a 4D scene onto a 3D hyperplane. However, GPUs can ren-
der only 3D scenes on a 2D plane, and they have only 2D buffers. We therefore
decompose the problem into that of rendering each of the 2D slices of B, one for
each fixed time, separately and combining these N3 slices at the end to construct
Vor�(S).

Fix a time slice τ of B, that is, the set of voxels with time index τ , let �τ be the
horizontal plane passing through the center points of the voxels of this slice. Bτ = B ∩ �τ

is a rectangle with an N1 × N2 2D uniform grid induced on it. Each pixel υτ of this 2D
grid, the intersection of a voxel υ with �τ , is a square; υ̂ is the center point of both υ
and υτ . For pi ∈ S, we define its Voronoi cell slice on �τ as

Vor�(pi, τ) = {υτ ∈ Bτ | υ ∈ Vor�(pi)}.

Vor�(S, τ) is the subdivision of Bτ induced by these cell slices, which can be viewed as
a discretization of the 2D slice of Vor(S) ∩ �τ inside B; see Figures 5(a) and 5(b).

We first describe how to compute Vor�(S, τ) for a convex distance function and then
improve it for Euclidean distance.

Convex distance function. For a fixed τ ∈ R and for a given i, 1 ≤ i ≤ n, we define
functions f τ

i : R2 → R as follows. For u ∈ R2, f τ
i (u) = d((u, τ), pi); that is, f τ

i is the
restriction of the distance function from pi at t = τ .

Let f τ (u) = mini f τ
i (u) be the lower envelope of Fτ = { f τ

1 , . . . , f τ
n }. Vor(S, τ), the

2D slice of Vor(S) for t = τ , is the projection of the graph of f τ on the xy-plane. As
in Section 3.2, Vor�(τ) can be computed by viewing Bτ as the 2D image plane and
rendering the triangulated surfaces γ

�
1 , . . . , γ

�
n with (0, 0,−∞) as the viewpoint; here,

γ
�
i is a triangulated surface approximating the graph of f τ

i . By repeating this for
all slices 0 ≤ τ < N3, we can compute Vor�(S); however, this requires rendering
each of the surfaces γ

�
i a total of N3 times (once for each slice of B). This can

be reduced to 2r by exploiting the region of influence as follows: for a fixed τ , let
Sτ = {p ∈ S | τ − r ≤ tp ≤ τ + r}. Then Vor�(S, τ) = Vor�(Sτ , τ). So while computing
Vor�(S, τ), we only render γ

�
i s for pi ∈ Sτ .

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:12 P. K. Agarwal et al.

Euclidean distance function. For the Euclidean distance function, we again compute
Vor�(S, τ) using the functions Gτ = {g1, . . . , gn}, defined as follows. For 1 ≤ i ≤ n, define
gτ

i : R2 → R as

gτ
i (x, y) = f τ

i (x, y)2 − x2 − y2 = −2xxi − 2yyi + x2
i + y2

i + (ti − τ)2,

and let gτ (x, y) = mini gτ
i (x, y) be the lower envelope of {gτ

i , . . . , gτ
n}. Vor(S, τ) is the

projection of the graph of gτ onto the xy-plane. Note that each gτ
i is a linear function.

Since we assume the influence region I to be a cylinder, its cross-section for t = τ is a
disk. As in R2, the truncation of the graph of gτ

i within the influence region of pi is an
ellipse. We therefore approximate it to a convex k-gon γ

�
i as in R2.

The GVOR(S, τ) procedure. We use GVOR(S, τ) to refer to the algorithm that computes
the slice of Vor�(S, τ). As in 2D, the algorithm returns the frame buffer containing the
color buffer and depth buffer F = (C, D). In the context of NNI, we assign the color h(pi)
to the surface γ

�
i , so for all pixels π ∈ Vor�(pi, τ), C[π] stores h(π).

4. NATURAL NEIGHBOR INTERPOLATION IN 2D

We now describe a GPU-based algorithm for computing NNI on a set Q of M × M
grid points. We will be using the discretized Voronoi diagram, described in Section 3,
instead of the standard Voronoi diagram, so we redefine the NNI function h : R2 → R
as follows. For a point q ∈ R2,

h(q) =
∑

p∈S |Vor�
S (p) ∩ Vor�

S∪{q}(q)| h(p)

|Vor�
S∪{q}(q)|

:= N(q)
D(q)

. (3)

We note that Equation (3) is an approximation of Equations (1) and (2) because of
the following:

(i) The tessellation error from the triangulated γ � surfaces for non-Euclidean metrics
(ii) The discretization error

(iii) The limited precision of the depth buffer D (which can cause problems at the
boundaries between two Voronoi cells)

(iv) The region of influence

By adjusting the corresponding parameters, we can bring Equation (3) as close to
Equation (1) as we wish.2 Here is a brief outline of the algorithm. We choose a scaling
parameter s so that each grid cell of Q contains s × s grid cells of the box B on which
Vor�(S) is computed. The algorithm works in two stages. The first stage computes
Vor�(S) using the GVOR(S) algorithm, described in Section 3. The second phase com-
putes Vor�

S∪{q}(q) for every q ∈ Q. Instead of computing Vor�
S∪{q}(q) sequentially for

each q ∈ Q, one by one, we use the features of the GPU to compute Vor�
S∪{q}(q) for

several grid points, and possibly for all points in Q if Q is not very large, in one pass.
This is accomplished using two ideas. First, as in Fan et al. [2005], if the bit depth of
the color buffer is w, we compute Vor�

S∪{q} for w points of Q by packing the bits of the
color buffer carefully. Second, we observe that if two grid points q1, q2 ∈ Q are not very
close to each other, then Vor�

S∪{q1}(q1) and Vor�
S∪{q2}(q2) are independent and thus can

be computed in parallel using the GPU. We make these statements precise later. Before
describing the algorithm in detail, we introduce some notation.

2For instance, the tesselation error can be reduced by increasing the number of triangles in γ �, thus achieving
a smaller difference between γ � and γ . Similarly, the region-of -influence approximation can be reduced by
carefully truncating the γ � surfaces and tweaking the range of the depth buffer.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:13

Fig. 8. Embedding Q (green points) on �; s = 3 and r = 2. The shaded area shows the s × s pixels around a
point of Q.

For simplicity, we assume that the length of each grid cell Q is 1, and we use Q[i, j]
to denote the (i, j)’th query point of Q for 0 ≤ i, j < M. Let s be the scaling parameter
and w the bit depth of the color buffer, as mentioned earlier. For simplicity, we assume
s to be odd, M to be a power of 2, and B = √

w also to be a power of 2. The length of
each pixel is 1/s. Suppose the frame buffer of the GPU has size N × N. Q is mapped
to the image plane � so that each grid point of Q lies at the center of an s × s array of
pixels of �. As in Section 3, we assume that the region of influence is a disk of radius
r, and thus we can assume that all points of S lie within distance 2r from Q. Let R(Q)
denote the square Q ⊕ [−2r, 2r]2, where Q is the bounding square of Q; that is, R(Q)
is the square of side length M + 4r. Let α = (s − 1)/2 + 2rs. We map the bottom left
corner of Q to that of B, so the query point Q[i, j] maps to the pixel (is + α, js + α); see
Figure 8.

We first define the algorithm under the following two assumptions:

(A) (A1) L ≥ (M + 4r)s, that is, M ≤ L/s − 4r
(B) (A2) r ≤ B/2

Recall, L denotes the side length of the maximum buffer that the GPU can handle.
The first assumption (A1) ensures that R(Q) can be mapped to B without exceeding
the amount of available memory on the GPU. For a graphics card with w = 32 and
with s = 5, the second assumption implies that r ≤ 5 meters if the grid Q has a
resolution of 2 meters. In other words, the height of a grid point of Q is not affected by
an input point that is more than 10 meters away. With high-resolution LiDAR datasets
having potentially better than submeter and near-uniform density, this is a reasonable
assumption. Nevertheless, we will discuss at the end how we adapt our algorithm if
(A1) and (A2) do not hold.

We are now ready to describe the algorithm.

First phase. We create a new active frame buffer F = (C(1), D) and call GVOR(S).
Recall that the color of the surface corresponding to pi ∈ S is set to h(pi). After the
first phase, C(1)[π] stores h(pi) for all pixels π ∈ Vor�(pi). Before exiting from phase 1,
we create a new blank color buffer C(2), replacing C(1) in the active frame buffer, but
we leave C(1) in the GPU memory. We leave the depth buffer intact in the active frame
buffer; that is, D[π] continues to store ‖πϕ(π, S)‖, the distance from the center of π to
ϕ(π, S).

Second phase. The second phase computes N(q) and D(q), as defined in Equation (3),
for every q ∈ Q. We proceed as follows: we set the depth buffer in read-only mode, but

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:14 P. K. Agarwal et al.

Fig. 9. (a) Vor(S) of a set S. (b) Vor(S∪{q1}) and Vor(S∪{q2}) for two query points q1 and q2. (c) Vor�(S∪{q1})
and Vor�(S ∪ q2). The colors correspond to the bitwise-OR colors of the query point. Query point q1 and q2
have colors 01 and 10, respectively; the pixels in Vor�

S∪{q1}(q1)∩Vor�
S∪q2 (q2) thus get the color 01∨10 = 11,

where ∨ is bitwise-OR.

recall that it stores the depth values computed in the first phase. For each q ∈ Q, we do
the following. We render all triangles of the surface γ

�
q . Since D is left intact and the

color buffer C(2) is blank, this step computes Vor�
S∪{q}(q). We compute N(q) by adding

the values of C(1)[π] for all π for which C(2)[π]
= ⊥. D(q) is the number of pixels π with
C(2)[π]
= ⊥. After processing each q, we reset all entries of C(2) to ⊥. Note that since D
is in read-only mode, it is not modified while processing q.

Next, we describe how to parallelize the computation of Vor�
S∪{q}(q) by using the

bit-packing trick and exploiting the independence of influence region of faraway
points.

Packing bits of C(2). Let q1, q2, . . . , qm, for m < w, be a subset of points in Q. We show
how to compute the height at all these points in one pass. Let γ

�
i be the triangulated

surface that approximates the function fqi . The color of all triangles in the surface γ
�
i

is set to 2i. This ensures that colors of γ
�
1 , . . . , γ

�
m are bitwise disjoint.

Suppose a triangle T of color χ is being rendered. If the depth of T at a pixel π is
larger than D[π], then nothing happens. Otherwise, C(2)[π] is set to C(2)[π] ← C(2)[π]∨χ ,
where ∨ is the bitwise-OR operation. Recall that D[π] is not updated, as it is in read-
only mode, and that D[π] stores ‖πϕ(π)‖. After rendering all γ

�
1 , . . . , γ

�
m , the ith bit of

C[π] is 1 if π ∈ Vor�
S∪{qi}(qi); see Figure 9(c).

We let C(2) denote the contents of the buffer after the second phase. We compute
N(qi) by summing the values of C(1)[π] for all pixels π for which the ith bit of C(2)[π] is 1
and then dividing the sum by the number of such pixels. We have computed N(qi) and
D(qi), and thus h(qi), for all 1 ≤ i ≤ m by rendering all surfaces in one pass.

Processing independent points. We call two points p, q ∈ R2 independent if ||pq|| > 2r
(i.e., their influence regions are disjoint). A useful property of independent points is
that Vor�

S∪{p}(p) and Vor�
S∪{q}(q) are disjoint, so a pixel belongs to at most one of them.

Given a pixel π ∈ � that is known to lie in one of them, we can determine in O(1) time
whether π ∈ Vor�

S∪{p}(p) or π ∈ Vor�
S∪{q}(q)—the former if p is closer to π than q.

We can therefore render both γ
�
p and γ

�
q in one pass using the same color. With this

observation at hand, we proceed as follows.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:15

Fig. 10. (a) Splitting Q into query tiles of size B × B = 16 query points, with B = 4. (b) All the Q∗
[1,1] query

points are independent since their areas of influence (depicted by circles in the figure) are disjoint.

We partition Q into (M/B)2 query tiles, each of size B× B. For i = (i1, i2) ∈ [0, M/B)2,
the i tile denoted by Qi is Qi = {Q[j1, j2] | i1 B ≤ j1 < (i1 + 1)B, i2 B ≤ j2 < (i2 + 1)B}.
See Figure 10(a). A query point q ∈ Q can be represented by a pair (a, t), where a ∈
[0, M/B−1]2 is the index of the query tile that contains q and t ∈ [0, B−1]2 is the offset
of q within that query tile. For a fixed offset t, we define Q∗

t = {(a, t) | a ∈ [0, M/B−1]2}
to be the set of points of Q with offset t. By assumption (A2), r < B/2. Therefore, for
any t ∈ [0, B − 1]2, the points in Q∗

t are pairwise independent—the distance between
points of Q∗

t lying in adjacent tiles is B > 2r; see Figure 10(b).
For t = (t1, t2) ∈ [0, B)2, we set χ (t) = 2t1 B+t2 and assign the color χ (t) to the query

surfaces γ
�
q for all q ∈ Q∗

t . We render the surface γ
�
q for all q ∈ Q one by one while

keeping the depth buffer D in read-only mode. Let C(2) denote the content of the color
buffer after rendering all of these surfaces. We process each pixel π ∈ C(2) as follows:
If the �th bit of π is 1 (i.e., it has been rendered by a query point with the offset
l = (��/B�, � mod B)), π ∈ Vor�

S∪{q}(q) for some q ∈ Q∗
l . Then we compute in O(1) time

the point qπ ∈ Q∗
l that is nearest to π ; let NN(π, l) denote this procedure. As stated

earlier, among all points of Q∗
l , π ∈ Vor�

S∪{qπ }(qπ). For each q ∈ Q, we now compute
N(q) and D(q) as before. See Algorithm 1 for the pseudo-code.

This completes the description of the algorithm. Hence, if assumptions (A1) and (A2)
hold, the height of all points in Q can be computed in one pass. Next we describe how
to adapt the algorithm if (A1) or (A2) does not hold.

Handling larger regions of influence. If the assumption (A2) does not hold (i.e., the
influence region is too big), the first phase of the algorithm, which computes Vor�(S),
remains the same, but the second phase works in multiple passes, each computing the
height of a subset of grid points.

We set B = 2�log2 2r� and partition Q into blocks of size B × B. Two grid points of Q
with the same offset remain independent and thus can be processed simultaneously as
before. But each block has more than w grid points, so one cannot process all of them
in one pass using the bit-packing approach.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:16 P. K. Agarwal et al.

ALGORITHM 1: Computing N(q) and D(Q).
1: for i ← 0 to M − 1 do
2: for j ← 0 to M − 1 do
3: N[i, j] ← 0, D[i, j] ← 0
4: for all π ∈ C(2) do
5: if C(2)[π]
= ⊥ and C(1)[π]
= ⊥ then
6: v = C(2)[π]
7: for � ← 0 to w − 1 do
8: v� = �’th bit of v
9: if v� = 1 then
10: (i, j) = NN (π, �)
11: N[i, j] ← N[i, j] + C(1)[π]
12: D[i, j] ← D[i, j] + 1
13: return (N, D)

We partition each block j into B
2
/B2 tiles, each of size B× B. Each tile is represented

by a pair i = (i1, i2) ∈ [0, B/B)2 and each grid point in a tile is represented by its offset
t ∈ [0, B)2. Therefore, a grid point q with offset t, lying in the tile i, of a block j is
represented as the triple (j, i, t).

For a fixed i ∈ [0, B/B)2, let

Q∗
i = {(j, i, t) | j ∈ [0, M/B)2, t ∈ [0, B)2}

be the set of all grid points of Q that lie in a tile whose index is i.
We note that two points in Q∗

i with the same offset but lying in two different blocks
are independent because B > 2r. Furthermore, there are at most w points of the same
block in Q∗

i . Hence, we can process all points of Q∗
i in one pass. Namely, for any point

q ∈ Q∗
i with offset t = (t1, t2), we set the color of γ

�
q to χ (t) = 2t1

√
w+t2 . We render the

surfaces in {γ �
q | q ∈ Q∗

i } one by one in one pass. After rendering all of them, we compute
N(q) and D(q) for all q ∈ Q∗

i using Algorithm 1. Since all points in Q∗
i with the same

color are independent, the algorithm computes h(q) for all q ∈ Q∗
i correctly. Repeating

this procedure for all i ∈ [0, B/B)2, we compute the elevation of all points of Q in (B/B)2

passes.

Handling larger grids. The preceding algorithm assumed Q to be small enough
(assumption (A1)) to be mapped to �. This is not always realistic for the value of L is
limited by the graphics hardware. For example, L ≤ 214 = 16, 384 on modern graphics
cards such as the NVIDIA GeForce GTX 660. With a scaling parameter s = 5, we have
M ≤ �214/5� = 3, 276, implying that we can process 3, 2762 ≈ 107 grid query points in a
single pass. Recall that each pass consists of two rendering phases and the subsequent
buffer analysis. For s = 2 and a 2m grid spacing of Q, this corresponds to computing
a grid DEM for a region of roughly 70 × 70km2 in area. However, we often want to
generate grid DEMs that are considerably larger, in which case we proceed as follows.

Let μ = (L − 4r)/s; the largest grid of query points that can be handled in one pass
is μ × μ. Thus, if M > μ, we partition Q into μ × μ parcels and process these parcels
individually. For k = (k1, k2) ∈ [0, �M/μ�)2, we define the parcel Qk = {Q[k1μ+ l1, k2μ+
l2] | (l1, l2) ∈ [0, μ)2}.

We process each parcel Qk independently. For each k, let Sk ⊆ S be the subset of
points relevant for Qk, that is, Sk = S ∩ R(Qk). We compute the elevation of points in
Qk with respect to Sk using the previous algorithm. For now assume that we have Sk

at our disposal for all k.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:17

Fig. 11. (a) Recursive partition to compute Sk. (b) Partition of Q into parcels. (c) Partition of a parcel Qk

into blocks; the solid region corresponds to R(Qk). (d) Partition of the blocks of Qk into tiles; all same-colored
tiles are processed in one pass.

Putting everything together, there are three levels of partitioning of Q (cf. Figure 11):

Qk: Partition Q into �M/μ�2 parcels, each of size at most μ×μ, where μ = (L−4r)/s.
Qk

j : Partition each parcel Qk into �μ/B]2 blocks, each of size at most B × B, where

B = 2�log2 r�.
Qk

j,i: Partition each block Qk
j into tiles each of size at most B× B, where B = √

w.

A point q ∈ Q is represented as a 4-tuple (k, j, i, t) for k ∈ [0, �M/μ�)2, j ∈ [0, �μ/B�)2,
i ∈ [0, �B/B�)2, and t ∈ [0, B)2. Here k is the index of the parcel that contains q, j is the
index of the block in the parcel Qk that contains q, and t is the offset of q within the
tile Qk

j,i.

The height of points in Q is computed in �M/μ�2 × �B/B�2 passes, as follows. Fix a
pair k ∈ [0, �M/μ�)2, i ∈ [0, �B/B�)2. Let

Q∗
(k,i) = {(k, j, i, t) | j ∈ [0, �μ/B�)2, t ∈ [0, B)2} .

All points of Q∗
(k,i) are processed in one pass using the points in Sk. For all points

q ∈ Q∗
(k,i) whose offset is t = (t1, t2), the color of all triangles in γ

�
q is set to 2t1 B+t2 . Note

that some of the points of S are sent to the GPU multiple times. In particular, if the
points of S are uniformly distributed, then on average each point of S is processed at
most (1 + 2r

2r+μ
) times.

This completes the description of the algorithm except how to compute the set Sk for
each parcel Qk, which we describe next.

Computing Sk. If we only care about the CPU and GPU efficiency of the algorithm
and are not concerned about the time spent in accessing the data, which may reside
on disk, computation of Sk is straightforward. However, if S is too large to fit in main
memory and resides on disk, the time spent in transferring the data between disk
and main memory is the bottleneck. In our application, S is indeed too large to fit in
main memory, so we describe an algorithm that minimizes the data transfer between
disk and main memory, that is, the number of I/O-operations. This algorithm will be
referred to as the binning procedure.

Using the two-level I/O model introduced by Aggarwal and Vitter [1988], let mbe the
size of main memory and b be the disk block size (i.e., the number of words that are
transferred between disk and main memory in each disk read/write operation). The
disk is assumed to have infinite size. We describe a recursive algorithm in this model

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:18 P. K. Agarwal et al.

for computing Sk for every parcel Qk. We assume that S is too large to fit in main
memory.

Set u = min{ M
μ

,
√

m/b}. We partition Q into u2 subgrids, each of size �M/u� × �M/u�.
If u = M/μ, then each subgrid is a parcel. We create a bin for each subgrid. We scan
S once. For each point, we find in O(1) time the (at most four) subgrids Q(i) such that
p ∈ R(Q(i)). If p ∈ R(Q(i)), we add p to the bin of Q(i). Once a bin gets full, we write it
to the disk and create a new bin for that subgrid. The total number of I/Os performed
is O(|S|/b). Let S(i) = S ∪ R(Q(i)) be the set of points assigned to Q(i). If u < M/μ, then
each subgrid is a parcel, so we have the relevant points for each parcel and we are
done. Otherwise, if u > M/μ, we recursively solve the subproblem for each subgrid Q(i)

using the points of S(i). The algorithm stops after O(logm/b
M
μ

) recursive steps. Hence,
the algorithm performs a total of O(N

b logm/b
M
μ

) I/Os.

5. NATURAL NEIGHBOR INTERPOLATION ON 3D GRIDS

Let S be a set of n points in R3, each point p ∈ S endowed with an elevation value h(p),
and let Q be an M × M × T grid of points in R3. We describe a GPU-based algorithm
for constructing the elevation at all points of Q using NNI as defined in Equation (3).
As in Section 3, we assume that the influence region of a point p ∈ R3 is the cylinder of
radius r and height 2r, centered at p, and its base parallel to the xy-plane.

Analogous to the computation of the Voronoi diagram in R3, described in Section 3,
we compute the elevation of points in Q slices by slice—at each stage we process a 2D
slice of Q with a fixed value of t. Each stage involves computing a portion of Vor�(S)—
roughly speaking, O(r) 2D slices of Vor�(S). Hence, each 2D slice of Vor�(S) is used
O(r) times. The question is whether we recompute this slice every time or compute it
once and store it. We present three algorithms, which provide a space-time tradeoff.
The first algorithm recomputes a 2D slice of Vor�(S) every time it is needed, resulting
in an algorithm that needs only one copy of the frame buffer F of the GPU, but renders
each point r2 times. The second algorithm computes a 2D slice of Vor�(S) only once
and then stores it on the GPU for future use. It needs 2r + 1 copies of F but renders
each point of S only r times. Finally, we describe a third algorithm that works for
time-series data; that is, input is collected at fixed time intervals, which is often the
case for GIS applications. It also assumes that the GPU has certain capabilities (see
later for details). Under these assumptions, it renders each point only once and needs
2(2r + 1) copies of F.

Before describing these algorithms, we fix a few parameters and notation. We assume
that Q has origin (0, 0, 0) and resolution 1 in each dimension, that is, Q = [0, M)2 ×
[0, T). Any 3D grid can be mapped to Q using an affine transformation and using an
adjusted distance function to preserve the structure of the Voronoi diagram. We define
B = Q + [−2r − 1/2, 2r + 1/2]3—large enough to contain all the points of S that are of
interest, and we can assume that S ⊂ B. Similarly to Section 4, we let s ∈ N be a scaling
parameter. We discretize B into an sM × sM × T 3D grid of voxels; each voxel is a box
of size 1

s × 1
s and height 1, and its volume is 1

s2 (cf. Figure 12). By our definition of B

and the voxels, each grid point of Q lies at the center of an s × s × 1 array of voxels of B;
that is, the temporal resolution of B and Q is the same, but the spatial resolution of B
is s times that of Q. One can choose the temporal resolution of B higher than that of Q,
but choosing the two to be the same simplifies the description of the algorithm.

We observe that the region of influence, being a cylinder with its axis parallel to the
time axis, implies that only voxels υ of Vor�(S) for which |tυ − tq| ≤ r are relevant for
computing N(q) and D(q) for any point q ∈ Q. Thus, we only need to consider 2r + 1

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:19

Table I. Performance of the Three Algorithms: |S| = n, and Each Copy of F Requires
Storing a Color Buffer and Associated Depth Buffer on the GPU

Algorithm # Copies Triangles Rendered per p ∈ S
of Passes of F General Weighted Euclidean

r2 1 O(r2kmn) O(r2n)
r 2r + 1 O(rkmn) O(rn)
1 2(2r + 1) O(kmn) O(n)

Fig. 12. (a) A query point in the middle of the point cloud of eight points in R3, same dataset as in Figure 5.
(b) The voxels of the query’s Voronoi cell colored based on the cells they stole volume from.

slices of B corresponding to t ∈ [tq − r, tq + r]. Applying this to Equation (3), we obtain

D(q) =
tq+r∑

τ=tq−r

∣∣Vor�
S∪{q}(q, τ)

∣∣ =
tq+r∑

τ=tq−r

D(q, τ), (4)

N(q) =
tq+r∑

τ=tq−r

∑

π∈Vor�
S∪{q}(q,τ)

h(ϕ(π, S)) =
tq+r∑

τ=tq−r

N(q, τ). (5)

Recall that for any fixed τ , let Sτ = {p ∈ S | |tp − τ | ≤ r} and that Vor�(S, τ) =
Vor�(Sτ , τ). We are now ready to describe the three algorithms. For each algorithm, we
describe how we compute the elevation of points in a fixed 2D slice Qi of Q.

The r2-pass algorithm. Equations (4) and (5) suggest that we compute N(q, τ) and
D(q, τ) for τ = i − r, . . . , i + r and for all q ∈ Qi. For each τ , we first compute Vor�(S, τ) =
Vor�(Sτ , τ) using the algorithm GVOR(Sτ , τ), described in Section 3. It returns a copy
of the frame buffer, which we denote by Fτ = (Cτ , Dτ). Next we adapt the second
phase of the 2D NNI algorithm of Section 4. It uses Fτ and renders the surfaces
Tτ,i(�) = {γ �

q | q ∈ Qi}, where γ
�
q approximates the graph of f τ

q —the distance function
from q in the plane t = τ—so the color buffer Ci,τ encodes Vor�

S∪{q}(q, τ) for all q ∈ Qi.
Then, using Fτ and Ci,τ , it computes N(q, τ) and D(q, τ). Depending on the size of M,
r, and s and GPU constraints, this may require several rendering passes and the I/O-
efficient algorithm for distributing the input points described in Section 4. We call this
modified 2D NNI algorithm INTERPOLATE(F, i, τ). It takes the frame buffer computed
after phase I of the algorithm and the values of i and τ as input and returns two M× M
arrays N∇ and D∇ such that N∇[q] = N(q, τ) and D∇ [q] = D(q, τ). The pseudo-code of
the overall r2-pass algorithm is described in Algorithm 2.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:20 P. K. Agarwal et al.

ALGORITHM 2: r2-Pass
1: for i ← 0 to T − 1 do
2: Hi ← Ni ← Di ← 0
3: for τ ∈ {i − r, . . . i + r} do
4: F ← GVOR(Sτ , τ)
5: (N∇ , D∇) = INTERPOLATE(F, i, τ)
6: Ni ← Ni + N∇ , Di ← Di + D∇

7: Hi ← Ni/Di
8: return H

ALGORITHM 3: r-Pass
1: Create F−r−1 . . . Fr−1
2: for i ← 0 to T − 1 do
3: Hi ← Ni ← Di ← 0
4: Delete Fi−r−1 from GPU
5: Fi+r ← GVOR(Si+r, i + r)
6: for τ ∈ {i − r, . . . i + r} do
7: (N∇ , D∇) = INTERPOLATE(Fτ , i, τ)
8: Ni ← Ni + N∇ , Di ← Di + D∇

9: Hi ← Ni/Di
10: return H

Each point p ∈ S is passed to the computation of O(r) slices of Vor�(Sτ , τ) for τ ∈
{�tp� − r, . . . , �tp� + r}. Furthermore, each Voronoi diagram slice Vor�(S, τ) is computed
2r + 1 times for Qτ−r, . . . , Qτ+r. Hence, each point of S is passed O(r2) times.

The r-pass algorithm. Some computations in the previous algorithm can be saved
by storing what has already been computed and reusing it: as before, let frame buffer
Fτ = GVOR(S, τ) refer to the combination of Cτ and Dτ describing Vor�(S, τ). The
previous algorithm generates Fi−r, . . . Fi+r and performs the interpolation on each time
slice. It must generate Fi+1−r, . . . Fi+1+r to process Qi+1. All these frame buffers, except
Fi+1+r, are already available from the processing of Qi, and thus they can be reused.
Thus, we only need to compute Vor�(S, i + r + 1) = Vor�(Si+r+1, i + r + 1) by calling
GVOR(Si+1+r, i + 1 + r). See Algorithm 3 for the pseudo-code. This algorithm requires
storing 2r + 1 frame buffers: 2r to save values from the previous stage, and one to
generate the new Voronoi diagram slice. Doing this for all 0 ≤ i < M in order lets us
generate each Fi only once. This method renders each point p ∈ S O(r) times: once for
each Vor�(Sτ , τ) for τ ∈ {�tp� − r, . . . , �tp� + r}.

The 1-pass algorithm. We now show that the number of passes can be reduced to 1 if
S is time-series data, d(·, ·) satisfies certain properties, and the GPU supports certain
primitives. For simplicity, we assume that S = �1 ∪ �2 ∪ · · · , where the t-coordinate of
all points in �i is i, the time coordinate of the ith slice of Q, and d(·, ·) is the weighted
Euclidean distance. Recall that the r-pass algorithm computes Vor�(Si+r, i + r) in the
ith stage, which computes the elevation of points in Qi. Note that Si+r = ⋃2r

j=0 �i+ j , so
each point belongs to 2r + 1 different Sis, and Si+r+1 = (Si+r \ �i) ∪ �i+2r+1. In order to
ensure that each point is rendered only once, we rely on two ideas. First, in principle,
if we have Vor�(�i, i), stored in a frame buffer, Vor�(�i, j) can be computed without
rendering any points. Second, if we have Vor�(�i, j), for j − r ≤ i ≤ j + r, Vor�(Si, j)
can be computed without rendering any points.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:21

Fig. 13. Computing F
j
i from F i using SHIFT(F i, (j − i)2)).

We first show how each of these two operations are performed and then describe how
to process each slice Qi so that any point of S is rendered only once.

First, we describe how to compute Vor�(�i, j) from Vor�(�i, i). For a point p ∈ �i,
that is, tp = i, we define the function gj,p : R2 → R as

gj,p(x, y) = −2xxp − 2yyp + x2
p + y2

p + (j − i)2 . (6)

Let gi
j(x, y) = minp∈�i gj,p(x, y) be the lower envelope of {gj,p | p ∈ �i}. Then Vor�(�i, j)

is the projection of gi
j . Since the last term in Equation (6) does not depend on

p, it immediately implies that Vor�(�i, j) is the same for all j; that is, if a pixel
π ∈ Vor�

�i (p, i), then π ∈ Vor�
�i (p, j) for all j ≥ i. Furthermore,

gi
j(x, y) = gi

i (x, y) + (j − i)2.

Let Fi
j = (Ci

j, Di
j) = GVOR(�i, j). Ci

j[π] stores the elevation of the point nearest to π

and Di
j stores the distance from π to its nearest neighbor. Set F i = Fi

i. By the previous
observation, Ci

j[π] = Ci
i[π] and Di

j[π] = Di
i[π] + (j − i)2. Then Fi

j can be computed from
F i by adding the value (j − i)2 to every pixel in Di

i. Let SHIFT(F, δ) be the procedure that
adds the value δ to all pixels in D; see Figure 13. Then

Fi
j = SHIFT(F i, (j − i)2).

Hence, Fi
j can be computed from Fi

i without rendering any points provided the SHIFT

procedure is available. Next, assuming we have F � for j −r ≤ � ≤ j +r, we can compute
Vor�(Si, j), which is stored in a copy of the frame buffer referred to as F j = (C j, D j), as
follows. We first compute F�

j , for j − r ≤ � ≤ j + r, as earlier. Then set

D j[π] = min
j−r≤�≤ j+r

D�
j[π]

and set C j[π] to the contents of C�
j[π] if D j[π] = D�

j[π]. We call this procedure
COMBINE(F j−r, . . . ,F j+r). The pseudo-code can be found in Algorithm 4.

With these two procedures at hand, we modify the r-pass algorithm as fol-
lows. The algorithm maintains the invariant that while processing Qi, it maintains
Vor�(Si−r, i −r), . . . , Vor�(Si+r, i +r) in the copies of the frame buffer Fi−r, . . . , Fi+r and
also Vor�(�i, i), Vor�(�i+1, i + 1), . . . , Vor�(�i+2r, i + 2r) in F i, . . . ,F i+2r. While pro-
cessing Qi, the algorithm first computes Vor�(�i+2r, i + 2r) using GVOR(�i+2r, i + 2r),
storing the result in F i+2r. Next, instead of computing GVOR(Si+r, i + r) by invoking
GVOR(Si+r, i + r), it uses the procedure COMBINE(F i, . . . ,F i+2r). The rest of the proce-
dure is the same. See Algorithm 5 for the pseudo-code and Figure 14 for an overview of
the procedure. Note that each point is processed only once, and that it stores 2(2r + 1)
copies of the frame buffer.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:22 P. K. Agarwal et al.

Fig. 14. The process of creating Fi from sets of data �i rendering each point only once.

ALGORITHM 4: COMBINE(F j−r, . . . , F j+r)
1: for all π ∈ F j do
2: C j[π] ← 0, D j[π] ← ∞
3: for i ∈ j − r, . . . , j + r do
4: Fi

j ← SHIFT(Fi, (j − i)2)
5: for all π ∈ F j do
6: if Di

j[π] < Di[π] then
7: D j[π] ← Di

j[π]
8: C j[π] ← Ci

j[π]
9: return F j

ALGORITHM 5: 1-Pass
1: Create F−1 . . . F2r−1 and F−r−1 . . . Fr−1
2: for i ← 0 to T − 1 do
3: H(Qi) ← N(Qi) ← D(Qi) ← 0
4: Delete Fi−1 and Fi−r−1 from GPU
5: Fi+2r ← GVOR(�i+2r, i + 2r)
6: Fi+r ← COMBINE(Fi . . . Fi+2r)
7: for τ ∈ {i − r, . . . i + r} do
8: (N∇ , D∇) = INTERPOLATE(Fτ , i, τ)
9: Ni ← Ni + N∇ , Di ← Di + D∇

10: Hi ← Ni/Di
11: return H

6. EXPERIMENTS

We describe here our implementation of the algorithm given earlier and offer empirical
results to demonstrate the quality and efficiency of the algorithm on real-world as well
as synthetic terrains.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:23

6.1. Implementation

TerraNNI was implemented in C++ using OpenGL to interact with the graphics card.
The source code is available at https://github.com/thomasmoelhave/TerraNNI. The
color and depth buffers were implemented using OpenGL’s frame-buffer and render-
buffer objects; the display list feature of OpenGL was used to render the surfaces.
We optimized some steps of the algorithm that greatly improve the efficiency of our
implementation in practice.

GPU-to-CPU communication. Recall that besides drawing the surfaces, the
INTERPOLATE procedure of the algorithm performs certain computations on the data
stored in color and depth buffers. In particular, it aggregates the data to compute the
elevation at query points. Since the bus connecting the GPU to the CPU is relatively
slow, it is important to perform certain operations on the GPU itself and minimize
the data transfer, ideally only transferring the final interpolated values for each query
point of Q back to main memory. To do this, we use CUDA [NVIDIA 2010], first to
implement INTERPOLATE and then to calculate the interpolated values directly on the
graphics card. Because performing INTERPOLATE in CUDA parallelizes the computation
of N and D as GPU buffers, we use CUDA’s atomic addition operation to prevent the
same location of N and D from being incremented by multiple threads simultaneously.
With N and D stored in GPU memory, we also calculate the interpolated values H on
the graphics card. As a result, only one read operation is performed to transfer data
from the GPU to the CPU, with only one 32-bit word for each query point of Q.

Minimizing disk transfers. Recall that we have described an algorithm to compute
Sk ⊆ S, the subset of relevant points for each layer Qk. This algorithm is implemented
using the Templated Portable I/O Environment (TPIE) library [TPIE Development
Team 2014]. TPIE is also used to store the output, the elevation of the query grid
points, in a row-major 2D grid, which involved sorting the output.

6.2. Experimental Setup

We ran our experiments on an Intel Core i7-3770 CPU at 3.40GHz with 24GB of
internal memory and two 2TB 7200RPM hard drives in a RAID 0 setup. The machine
has Ubuntu 13.10. Additionally, the machine contained an NVIDIA GeForce GTX 660
graphics card running CUDA 5.0. This card has 2 gigabytes of memory and 960 CUDA
cores.

Datasets. We tested our algorithm on the following 2D and 3D datasets:
Lake Tahoe: The first 2D dataset we used was a large public LiDAR dataset that

covers Lake Tahoe in the United States.3 The dataset is 56GB, covering 34 × 69km2

with over 2.1 × 109 points. The region includes the 490km2 Lake Tahoe in the center,
which has no LiDAR points because it is a body of water. Outside the lake, the ground
point density was about 2.2 points/m2.

Afghanistan: The second dataset is a point cloud of a mountainous region in the
Paktika province of Afghanistan.4 This dataset is 3.5GB, covering an area of 4, 000 m2,
with over 1.86×108 points. This is approximately 6.5 points/m2 on average. Because the
Afghanistan dataset comes from a mountainous region, the data is useful for comparing
how different algorithms handle steep slopes and ridges.

This dataset contains many nonground points. For part of the quality tests we used a
subset of the points with most of the nonground points removed.5 The resulting subset,

3Available at http://www.opentopography.org/index.php/news/detail/lake_tahoe_basin_lidar_data_released.
4Afghanistan data courtesy of ARO.
5This was done by only using the “last return” points for each pulse.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

https://github.com/thomasmoelhave/TerraNNI
http://www.opentopography.org/index.php/news/detail/lake_tahoe_basin_lidar_data_released.

7:24 P. K. Agarwal et al.

which we refer to as Afghanistan-1, has a point density of 0.26 points/m2. We also
removed a portion of the points, keeping only one out of 16 data points at random. This
produces a point density of 0.016 points/m2. We refer to this dataset as Afghanistan-2.

Nags Head: To test our 3D algorithm, we use LiDAR data collected from the Nags
Head, NC, region for the years 1997–1999, 2001, 2004, 2005, 2007, and 2008. The
data ranges from 105 points/year to nearly 3 × 106 points/year, totaling just under
2 × 107 million points and 0.38GB. The data is freely available at NOAA [2014] and
was provided to us by Dr. Helena Mitasova.

Synthetic: We also tested our 3D algorithm on synthetic data generated by Qhull’s
rbox tool [Barber et al. 1996]. We used this to create numerous datasets, each a random
point cloud in a 3D cube of side length 104 along with an elevation value for each point.
They have 103 to 1010 points, and their sizes vary from 20KB to 186GB.

Parameter choices. There are a few parameters that can be adjusted to tune Ter-
raNNI’s speed and quality tradeoffs. We list later the default parameters used in the
following experiments, which offer a sufficiently high quality of output without signifi-
cantly slowing the running time. We set the scaling parameter s = 5, the side length of
a pixel ρ = 0.4 meters, the radius of the influence region of input points rs = 5 meters,
and the radius of the query influence region rq = sρB/2. The word size w of the color
buffers is 32 bits (though this can easily be increased to 128 bits on modern graphics
cards), so B = 5 and then rq = 5 meters.

We use the Euclidean metric as the distance function for most of our tests. We tested
our algorithm by treating the distance function as a general convex distance function
as well as using the lifting transform. In rendering general convex distance functions,
we generate the surfaces γ

�
i by setting m = 5 and k = 50. As a result, each γ

�
i is

composed of 500 triangles in total. When using the lifting transform, we clip the plane
γi to an ellipse γ �

i , approximate it by a rectangle γ
�
i circumscribing γ �

i , and partition it
into two triangles.

We tested the algorithm with varying values for especially s and k and m, but values
larger than the ones chosen did not have much impact on the output, implying that
increasing the values further is not worth the tradeoff in computation time.

6.3. Output Quality

To test the quality of the output, we constructed DEMs of the full Afghanistan dataset
with a resolution of 1 meter using three interpolation schemes: the spline-based RST
scheme, linear interpolation, and NNI. We choose the Afghanistan dataset because it
has the most variation in elevation. Figure 15 shows the resulting DEMs. We used the
full Afghanistan point cloud and thus, trees are visible in the model. The trees represent
high-frequency components in the data, and they exhibit the largest difference between
the three interpolation methods. The three DEMs are indistinguishable at a high level,
and the differences are minor in the detailed view.

We then used the Afghanistan-1 dataset, as well as the sparser Afghanistan-2
dataset, to focus on elevation at the ground level and see how the density of data
affects the quality. Using the GRASS GIS system [GRASS Development Team 2014],
we compute the contour lines from the interpolated data with a 1-meter increment
between contour levels.

Figure 16 shows sample images from the contour maps of Afghanistan-1 and
Afghanistan-2. The linear interpolation produces jagged contour results, while the
NNI generates smooth contours, especially around portions of large curvature. As the
input data becomes sparser (see Afghanistan-2), the linear interpolation becomes in-
creasingly jagged, while the NNI output remains smooth. The contours generated using
RST interpolation were indistinguishable from the contours generated using NNI.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:25

Fig. 15. Afghanistan 1m resolution DEMs, as constructed using different interpolation schemes. The top
row shows a high-level overview; the area marked by the red box is displayed in detail in the bottom row.

6.4. Efficiency

We now discuss the impact of parameter settings on the efficiency of the 2D and the
3D algorithm.

2D performance. We tested the effect of varying the main parameters—grid size,
scaling, and radius of the query influence region—on each phase of the algorithm:
binning, GVOR, drawing the query surfaces, INTERPOLATE, and writing the output to
disk, and saving the final results. By default, we use a 2m grid of size 2,027 by 4,700
with qr = 5 and s = 5. Table II summarizes the results on the Afghanistan dataset. We
note that the binning procedure is the same for all runs since we use the same dataset
in each test. This step, consisting almost entirely of disk I/O, takes a majority of the
running time. Since this step is not the primary focus of our algorithm, we didn’t try
to optimize it.

As we decrease the size of the query grid cells from 2 meters down to 1 meter
to 0.5 meter, the number of grid points increases to 4 and 16 times, respectively.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:26 P. K. Agarwal et al.

Fig. 16. Contour map comparison. In both figures, the grid used for the red (black, respectively) contours
was generated from the Afghanistan data using linear (natural neighbor, respectively) interpolation.

Table II. Comparison of Running Times of Different Variants of TerraNNI on the Afghanistan
Data Set (by Default We Have a 2m Grid, qr = 5 and s = 5)

0.5m Grid 1m Grid 2m Grid qr =50 s=15

Binning time 3m 20s 3m 25s 3m 37s 3m 36s 3m 26s

GVOR(S) 1m 1m 3s 1m 2s 1m 14s 1m 6s
Draw query surface 47s 14s 4.07s 34s 3.46s

INTERPOLATE 20s 5.0s 1.28s 15s 3.08s
Write points 12s 2.39s 0.82s 0.69s 0.74s

Save results 3m 43s 10s 10s 10s

Total interpolation time 2m 19s 1m 24s 1m 8s 2m 5s 1m 14s
Total running time 8m 40s 5m 31s 4m 56s 5m 51s 4m 50s

Unsurprisingly, the time to draw the Voronoi diagrams is largely unaffected since we
are drawing approximately the same number of triangles for this step. The slight
increase in GVOR timing is because the number of grid points increases, the number of
parcels increases, and therefore more input points lie in multiple parcels.

Drawing query surfaces, INTERPOLATE, and writing the output to disk all increase in
time approximately linearly with the number of grid points because each additional
grid point requires drawing one more query surface, interpolating one more point, and
saving one more grid point of output.

Next, increasing the radius of the query influence region 10-fold, from 5 meters
to 50 meters, causes the time for both drawing the query surfaces and INTERPOLATE to
increase significantly, 8.4 times and 11.4 times, respectively, because we now must take
121 passes of drawing query surfaces and INTERPOLATE, thus reducing parallelism. This
demonstrates the tradeoff of covering regions with no data as well as the importance
of our choice to limit the query radius.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:27

Table III. Comparison of Our 3D Algorithm on the NC Coastal Dataset Under Different Settings
(for Clarity, We Include Only One Parameter Setting for the Lifting Transform)

Lifting Transform General Convex Metric
r-algorithm r2-algorithm r-algorithm r2-algorithm

r = 1 r = 1 r = 1 r = 2 r = 1 r = 2

Binning time 27s 21s 29s 21s 21s 22s

GVOR(S) 22s 1m 24s 29s 47s 1m 44s 4m 58s
Draw query surfaces 2m 32s 2m 38s 3m 31s 5m 41s 3m 36s 5m 43s

INTERPOLATE 34s 25s 26s 48s 21s 38s
Write points 7.07s 7.02s 7.07s 7.01s 6.96s 6.97s

Save results 1m 48s 1m 49s 1m 49s 1m 48s 1m 48s 1m 48s

Total interpolation time 3m 36s 4m 35s 4m 34s 7m 24s 5m 49s 11m 27s
Total running time 5m 52s 7m 59s 6m 51s 9m 34s 7m 58s 13m 36s

Finally, as described, the scaling parameter changes the number of pixels between
grid points; thus, a larger s means higher precision. We see that the time to draw the
Voronoi diagram and the query surfaces is largely unaffected by the increase in s from
5 to 15, despite the fact that more pixels are rasterized by triangles; this indicates that
rasterization is not a bottleneck in the rendering of the query surfaces. However, we
do see a nearly 2.4 times increase in the INTERPOLATE time. This is because with more
pixels in the same area, there are more atomic adds happening concurrently and thus
more contention, reducing the parallelism in INTERPOLATE. However, given that this step
is already fast, the increase in time is relatively insignificant.

3D performance. We tested the r-pass and r2-pass algorithms with r = 1 and r = 2 on
the Nags Head dataset. Each test produced a 3D grid with a spatial 1-meter resolution
over a 2.3×1.8km2 region. The 3D grid has 12 slices in time, corresponding to producing
an output every half year for 6 years in total, and this 3D grid has a total of about
4.8 × 107 voxels. For each of these parameter settings, we used the Euclidean metric
but tested both for treating it as a convex distance function as well as using the lifting
transform. See Table III.

First, we observe a significant improvement from the r2-pass algorithm to the r-pass
algorithm, especially in the GVOR step, taking 16% of the time when r = 2 and 28%
of the time when r = 1. Overall, the r-pass algorithm takes approximately 66% of the
interpolation time of the r2-pass algorithm when r = 2 and 79% of the interpolation
time when r = 1.

For both the r and r2 algorithms, increasing the time radius r results in more time
needed for GVOR, drawing query surfaces, and INTERPOLATE. By increasing r, each input
point is drawn approximately 5 rather than 3 times during the r-algorithm, resulting
in GVOR taking about 1.4 times as much time with the larger radius. When running the
r2-algorithm, this change in r is exacerbated with points being drawn 25 times rather
than 9 times, and GVOR takes approximately 2.3 times as long for the larger radius. By
increasing r, we also now render each query point and run the INTERPOLATE algorithm
more times, resulting in similar increases in time for both of these steps.

Finally, we note that the lifting transform significantly reduces the time spent in
drawing input and query surfaces because each surface consists of only four trian-
gles. But INTERPOLATE takes longer because we are approximating an ellipse with its
circumscribing rectangle and thus a larger influence region, which causes INTERPOLATE

to aggregate the values over more pixels. Overall, the lifting transform saves 30%
to 40% the time. Overall, we find that using the Euclidean metric results in the

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:28 P. K. Agarwal et al.

Table IV. Running Time of TerraNNI, RST, and Linear
Interpolation on the Lake Tahoe and

Afghanistan Datasets

Dataset TerraNNI RST Linear

Afghanistan 5m 16s 36m 10s 7m 0.8s
Lake Tahoe 85m 51s 867m 32s 160m 45s

interpolation time being between 67% and 79% of the interpolation time with a general
convex metric.

6.5. Scalability Comparison

To test the scalability of our algorithm, we run experiments on both the 2D and 3D
versions of the algorithm.

Real-world datasets. For the 2D algorithm, we compared against results from ap-
plying a RST and linear interpolation based on the global Delaunay triangulation of
large real-world datasets. The RST implementation is from Danner et al.’s previous
work on TerraSTREAM [Danner et al. 2007]. The linear interpolation computes the
Delaunay triangulation of the entire dataset, as presented in Agarwal et al. [2005], and
then interpolates the value of each query point. Both of these algorithms are sequen-
tial. We use two large real-world datasets with varied terrain for our experiments: the
mountainous Afghanistan dataset and the Lake Tahoe dataset.

The results are summarized in Table IV. For the Afghanistan dataset, TerraNNI
takes 75% of the time of linear interpolation and 14.6% of the time of RST. However,
for the Lake Tahoe dataset, we see that the large lake in the middle of the region is time
consuming for RST and linear interpolation but not as much so for TerraNNI; here our
algorithm benefits greatly from the parallel processing of query points. In particular,
TerraNNI takes only 53.4% of the time of the linear interpolation and 9.9% of the time
of RST for the Lake Tahoe dataset.

Synthetic datasets. We compared our 3D implementation against traditional (exact)
CPU algorithms. Note that, in addition to being confined to the CPU, these algorithms
robustly and exactly compute the Voronoi diagrams Vor(S), which is a more complicated
structure than Vor�(S). Common for all the algorithms later is that attempt to store
the entire Voronoi diagram in memory, which in practice means that the available
system memory determines how large datasets they can handle. Since our system has
24 gigabytes of main memory, these CPU algorithms were able to handle fairly sizable
datasets but still slow down significantly on larger inputs.

Table V shows the results of running times on the synthetic datasets. For all datasets,
TerraNNI interpolates a grid of 5,000 by 5,000 by 20. On small to medium-sized
datasets, TerraNNI takes approximately constant time, because the time taken to
draw the query surfaces and write the output to disk is independent of the data size
and dwarfs the handling of the input point small datasets. We also look at the time
it takes for TerraNNI to perform the interpolation, without including I/O costs. The
results illustrate that several phases of the algorithm are independent of the number
of input points (e.g., the drawing of the query surfaces). As such as the data size in-
creases, the interpolation time increases more slowly than the general running time,
which includes the I/O time.

We compare against CPU-based algorithms by using CGAL [CGAL Development Team
2014] to perform 2D NNI on a grid of 5,000 by 5,000 and Interpolate3d [Hemsley 2009]
to perform 3D NNI on a grid of 5,000 by 5,000 by 20. CGAL finds the natural neighbors
for queries based on the 2D Voronoi diagram. As can be seen in Table V, CGAL is quite

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:29

Table V. Comparison of Running Times Against CPU-Based Methods
(Note CGAL and Qhull Only Compute the Triangulation)

Triangulation Natural Neighbor Interpolation
Number of Points CGAL qhull TerraNNI interp3d CGAL NNI (2D)

103 0.02s 0.064s 14m 9s 23h 33m 54s 2h 50m 32s
104 0.031s 0.25s 13m 53s > 2d 18h 1d 3h 54m 11s
105 0.26s 2.597s 13m 52s − > 2d 2h
106 4.182s 29s 14m 10s − −
107 1m 9s 7m 59s 14m 9s − −
108 − − 15m 52s − −
109 − − 41m − −
1010 − − 5h 10m 13s − −

slow for interpolating on even small datasets. This is primarily because even for small
datasets, there are many query points (2 × 107 because it is 2D NNI) to interpolate,
which CGAL does not handle efficiently. At about 105 input points, we stopped the run
after 3 days of running, at which point about 25% of the grid query points had been
processed. Interpolate3d is freely available and performs NNI of 3D vector fields on
the CPU. Similar to CGAL, Interpolate3d has trouble scaling to a large number of query
points. At 104 input points, we aborted the experiments after they had run for over 2
days without completing.

We also compared TerraNNI against state-of-the-art CPU-based algorithms for com-
puting the Delaunay triangulation, the dual of the Voronoi diagram, and thus a
fundamental part of computing NNI. We used the algorithm from the CGAL [CGAL
Development Team 2014] library as well as the one available in Qhull [Barber et al.
1996].

Both CGAL and Qhull were efficient in running on the smaller datasets but had trouble
scaling to larger datasets. For small datasets up to 106 points, CGAL was very fast, taking
less than 5 seconds to construct the Delaunay triangulation. This is significantly faster
than the time it takes TerraNNI to perform the full interpolation. (However, in practice,
TerraNNI spends only 2.07 seconds to read the data and draw the Voronoi diagram for
106 input points.)

On larger datasets, CGAL’s speed decreases, taking just over a minute to construct
the Delaunay triangulation for 107 data points. For larger datasets, CGAL runs out of
memory and crashes. Similarly, Qhull is very fast on relatively small datasets, taking
less than 5 seconds to perform the Delaunay triangulation for up to 105 points. However,
beyond this size, the speed starts decreasing, taking nearly 8 minutes for 107 points.
When Qhull attempts to run on 108 points, it too crashes.

From these experiments, we see that while some CPU methods are more efficient for
small datasets, they all quickly slow down for larger datasets and ultimately cannot
scale to large datasets due to memory constraints. Additionally, CPU methods do not
scale well to handle many queries. TerraNNI scales well to very large datasets, partially
because it computes approximate NNI, and partly because of its ability to massively
parallelize the processing of both input and query points.

7. CONCLUSION

In this article, we have demonstrated that GPUs can effectively construct large grid
DEMs using natural neighbor interpolation, even for spatiotemporal and 3D density
data. Our algorithm uses several levels of blocking to maximize the resource usage,
and the 2D algorithm is used as a fundamental building block in the 3D algorithm.

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

7:30 P. K. Agarwal et al.

TerraNNI uses a 3D rendering API, in this case, OpenGL, to compute the Voronoi
diagrams that form the basis of the interpolation, and the more general CUDA GPU
processing technology is used to process the rendered output. A recent paper has used
new features available in CUDA to avoid using a 3D rendering API for the case of
2D NNI [You and Zhang 2012]. An interesting question is how to combine the two
approaches to develop a fast 3D algorithm for large datasets.

There are many interesting compute-intensive terrain analysis problems defined
on GRID DEMs that could lend themselves to GPU computations. Some work has
already been done in that direction (e.g., Lebeck et al. [2013]), but many more problems
can benefit from the parallelism offered by a GPU. We are particularly interested in
problems involving topological persistence [Edelsbrunner et al. 2000] and hydrological
analysis [Danner et al. 2007].

ACKNOWLEDGMENTS

The authors thank Helena Mitasova and the U.S. Army Corps of Engineers for access to data, and Tamal
Dey and Danny Halperin for helpful discussions.

REFERENCES

P. K. Agarwal, L. Arge, and K. Yi. 2005. I/O-efficient construction of constrained Delaunay triangulations.
In Proceedings of the European Symposium on Algorithms. 355–366.

A. Aggarwal and J. S. Vitter. 1988. The input/output complexity of sorting and related problems. Communi-
cations of the ACM 31, 9 (1988), 1116–1127.

D. Attali and J.-D. Boissonnat. 2004. A linear bound on the complexity of the Delaunay triangulation of
points on polyhedral surfaces. Discrete & Computational Geometry 31, 3 (2004), 369–384.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. 1996. The Quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software 22, 4 (1996), 469–483.

J.-D. Boissonnat and F. Cazals. 2000. Smooth surface reconstruction via natural neighbour interpolation of
distance functions. In Proceedings of the 16th Annual ACM Symposium on Computer Geometry. 223–232.

CGAL Development Team. 2014. CGAL, Computational Geometry Algorithms Library. (2014). http://
www.cgal.org.

A. Danner, A. Breslow, J. Baskin, and D. Wilikofsky. 2012. Hybrid MPI/GPU interpolation for grid DEM
construction. In Proceedings of the 20th International Conference on Advances in Geographic In-
formation Systems (SIGSPATIAL’12). ACM, New York, NY, 299–308. DOI:http://dx.doi.org/10.1145/
2424321.2424360

A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitasova. 2007. TerraStream: From elevation
data to watershed hierarchies. In Proceedings of the 15th Annual ACM International Symposium on
Advances in Geographic Information Systems (GIS’07). ACM, New York, NY, 1–8. DOI:http://dx.doi.org/
10.1145/1341012.1341049

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. 1997. Computational Geometry – Algorithms
and Applications. Springer Verlag.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. 2000. Topological persistence and simplification. In Pro-
ceedings of the IEEE Symposium on Foundations in Computer Science 454–463.

H. Edelsbrunner and E. P. Mücke. 1994. Three-dimensional alpha shapes. ACM Transactions on Graphics
13, 1 (1994), 43–72. DOI:http://dx.doi.org/10.1145/174462.156635

Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkatasubramanian. 2005. Hardware-assisted natural
neighbor interpolation. In Proceedings of the 7th Workshop on Algorithm Engineering and Experiments
(ALENEX’05).

T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L.
Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf.
2007. The shuttle radar topography mission. Reviews in Geophysics 45 (2007). http://dx.doi.org/10.1029/
2005RG000183

S. Ghosh, A. E. Gelfand, and T. Mølhave. 2012. Attaching uncertainty to deterministic spatial interpola-
tions. Statistical Methodology 9, 1–2 (January–March 2012), 251–264. DOI:http://dx.doi.org/10.1016/
j.stamet.2011.06.001

GRASS Development Team. 2014. GRASS GIS Homepage. http://www.baylor.edu/grass/. (2014).

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

http:// ignorespaces www.cgal.org
http:// ignorespaces www.cgal.org
http://dx.doi.org/10.1145/ ignorespaces 2424321.2424360
http://dx.doi.org/10.1145/ ignorespaces 2424321.2424360
http://dx.doi.org/ ignorespaces 10.1145/1341012.1341049
http://dx.doi.org/ ignorespaces 10.1145/1341012.1341049
http://dx.doi.org/10.1145/174462.156635
http://dx.doi.org/10.1029/ ignorespaces 2005RG000183
http://dx.doi.org/10.1029/ ignorespaces 2005RG000183
http://dx.doi.org/10.1016/j.stamet.2011.06.001
http://dx.doi.org/10.1016/j.stamet.2011.06.001
http://www.baylor.edu/grass/

TerraNNI: Natural Neighbor Interpolation on 2D and 3D Grids Using a GPU 7:31

R. Hemsley. 2009. Interpolation on a magnetic field. (2009). http://code.google.com/p/interpolate3d/.
P. C. Kyriakidis and A. G. Journel. 1999. Geostatistics space-time models: A review. Mathematical Geology

31, 6 (1999), 651–684. http://www.springerlink.com/index/H5L4K7V760045748.pdf.
N. Lebeck, T. Mølhave, and P. K. Agarwal. 2013. Computing highly occluded paths on a terrain. In Proceedings

of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL’13). ACM, New York, NY, 14–23. DOI:http://dx.doi.org/10.1145/2525314.2525363

L. Li and P. Revesz. 2002. A comparison of spatio-temporal interpolation methods. In Geographic Information
Science. Vol. 2478. Springer, 145–160.

J. Mateu, F. Montes, and M. Fuentes. 2003. Recent advances in space-time statistics with applications to
environmental data: An overview. Geophysical Research 108, 8774 (2003).

E. Miller. 1997. Towards a 4d-GIS: Four dimensional interpolation utilizing kriging. In Innovations in GIS
4, Z. Kemp (Ed.). 181–197.

H. Mitasova, L. Mitas, W. M. Brown, D. P. Gerdes, I. Kosinovsky, and T. Baker. 1995. Modeling spatially and
temporally distributed phenomena: New methods and tools for GRASS GIS. International Journal of
Geographical Information Systems 9, 4 (1995), 433–446.

H. Mitasova, M. Overton, and R. S. Harmon. 2005. Geospatial analysis of a coastal sand dune field evolution:
Jockey’s ridge, North Carolina. Geomorphology 72, 1–4 (2005), 204–221.

T. Mølhave, P. K. Agarwal, L. Arge, and M. Revsbæk. 2010. Scalable algorithms for large high-resolution ter-
rain data. In Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial
Research & Application. ACM.

NOAA. 2014. NOAA Coastal Services Center, LIDAR Data Retrieval Tool. (2014). http://csc-s-maps-
q.csc.noaa.gov/dataviewer/viewer.html?keyword=lidar.

NVIDIA. 2010. CUDA Homepage. http://nvidia.com/cuda. (2010). 3.0.
S. J. Owen. 1992. An Implementation of Natural Neighbor Interpolation in Three Dimensions. Master’s thesis.
J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and T. J. Purcell. 2007. A survey of

general-purpose computation on graphics hardware. Computer Graphics Forum 26, 1 (2007), 80–113.
S. Park, L. Linsen, O. Kreylos, J. D. Owens, and B. Hamann. 2006. Discrete Sibson interpolation. IEEE

Transactions on Visualization and Computer Graphics 12, 2 (March 2006), 243–253.
S. Shekhar and H. Xiong (Eds.). 2008. Encyclopedia of GIS. Springer.
R. Sibson. 1981. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data, V.

Barnet (Ed.). John Wiley & Sons, Chichester, 21–36.
N. Sukumar, B. Moran, and T. Belytschko. 1998. The natural element method in solid mechanics. Interna-

tional Journal of Numerical Methods in Engineering 43, 5 (1998), 839–887.
TPIE Development Team. 2014. Templated Portable I/O Environment (TPIE). http://madalgo.au.dk/tpie.

(2014).
D. Watson. 1992. Contouring: A Guide to the Analysis and Display of Spatial Data. Oxford, Pergamon.
C. K. Wikle, L. M. Berliner, and N. Cressie. 1998. Hierarchical Bayesian space-time models. Environmental

and Ecological Statistics 5, 2 (1998), 117–154.
S. You and J. Zhang. 2012. Constructing natural neighbor interpolation based grid DEM using CUDA. In

Proceedings of the 3rd International Conference on Computing for Geospatial Research and Applications
(COM.Geo’12). ACM, New York, NY, Article 28, 6 pages. DOI:http://dx.doi.org/10.1145/ 2345316.2345349

Received August 2014; revised March 2015; accepted May 2015

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 7, Publication date: June 2016.

http://code.google.com/p/interpolate3d/
http://www.springerlink.com/index/H5L4K7V760045748.pdf
http://dx.doi.org/10.1145/2525314.2525363
http://dx.doi.org/10.1145/ ignorespaces 2345316.2345349

