
Categorical-Attributes-Based Item Classification for
Recommender Systems

Qian Zhao∗
University of Minnesota

Minneapolis, Minnesota, United States
zhaox331@umn.edu

Jilin Chen, Minmin Chen, Sagar Jain
Alex Beutel, Francois Belletti, Ed H. Chi

Google Inc.
Mountain View, California, United States

{jilinc,minminc,sagarj,alexbeutel,belletti,edchi}@google.
com

ABSTRACT
Many techniques to utilize side information of users and/or items
as inputs to recommenders to improve recommendation, especially
on cold-start items/users, have been developed over the years. In
this work, we test the approach of utilizing item side information,
specifically categorical attributes, in the output of recommendation
models either through multi-task learning or hierarchical classifica-
tion. We first demonstrate the efficacy of these approaches for both
matrix factorization and neural networks with a medium-size real-
word data set. We then show that they improve a neural-network
based production model in an industrial-scale recommender system.
We demonstrate the robustness of the hierarchical classification
approach by introducing noise in building the hierarchy. Lastly, we
investigate the generalizability of hierarchical classification on a
simulated dataset by building two user models in which we can
fully control the generative process of user-item interactions.

CCS CONCEPTS
• Information systems → Recommender systems;

KEYWORDS
recommender systems; hierarchical softmax; hierarchical classifica-
tion; multi-task learning
ACM Reference Format:
Qian Zhao and Jilin Chen, Minmin Chen, Sagar Jain Alex Beutel, Francois
Belletti, Ed H. Chi. 2018. Categorical-Attributes-Based Item Classification
for Recommender Systems. In Twelfth ACM Conference on Recommender
Systems (RecSys ’18), October 2–7, 2018, Vancouver, BC, Canada. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3240323.3240367

1 INTRODUCTION
Matrix factorization and deep neural networks, such as Recurrent
Neural Networks[12] (RNN), trained on user-item co-occurrence
data have become the default modeling choice for recommendation
systems. Nevertheless, the extreme sparsity of the co-occurrence
data still poses a huge challenge. Various algorithms have been
∗Work performed while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5901-6/18/10.
https://doi.org/10.1145/3240323.3240367

proposed to go beyond user-item co-occurrence data and take into
account item (or user) side information, i.e. the attributes of the
items or users. In particular, categorical attributes or taxonomies of
items offer similarity measurement between items, which is critical
for recommendation when the user-item interaction pair is sparse.
SVDFeature [7] and Factorization Machine [20] are a few successful
examples. In these approaches, item attributes are embedded in the
input and modeled together with the user-item co-occurrence data.

The structure of the item space induced by these categorical
attributes are often not utilized on the output side of the models
though. In this work, we propose to introduce auxiliary task to pre-
dict item categorical attributeswith the goal of improving the task of
item recommendation (prediction). Intuitively, more observations
are available on these coarser-granularity categorical attributes
than individual item. As a result, predicting these attributes is eas-
ier than predicting the item directly. The structural relationship
between the item attributes and the item itself, in return allows us
to utilize the auxiliary task to help item recommendation. Here we
focus on a particular setting where recommendation is modeled as
a multi-class classification problem, in which the number of classes
is the number of unique items in the system. We employ two mod-
eling techniques to introduce the auxiliary task of predicting item
attributes: hierarchical classification or hierarchical softmax [18]
(HSM) and multi-task learning [21] (MTL).

HSM is not a new technique but remain competitive and popular.
It is commonly used to speed up learning with a large number of
output classes. Morin and Bengio showcased its efficiency in the
context of language modeling[18], especially when incorporating
the hierarchy of words inherited from WordNet. Similarly, multi-
task learning has been explored extensively in prior work, where
shared model parameters between related prediction tasks can
help the main prediction task through regularization and transfer
learning [3, 21].

Predicting coarser concepts like people, topics (or tags) are not
new in recommender systems either, e.g., the tag recommender [22],
followee recommendation [6], etc. However, these work aims at
predicting these coarser attributes as the end goal. In contrast,
we are more interested in improving the item-level prediction by
introducing these coarser level targets into the modeling.

We demonstrate the effectiveness of the proposed approach
in modeling frameworks of both matrix factorization and neural
networks. We compare the performance of proposed approaches
against several baseline methods on utilizing item side information
on a public real-world dataset as well as a private industrial-scale

320

https://doi.org/10.1145/3240323.3240367
https://doi.org/10.1145/3240323.3240367

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Qian Zhao et al.

recommendation dataset. While both MTL and HSM offer notice-
able improvement over baselines, we find that HSM boosts the
performance substantially and consistently. We also examine the
robustness of HSM w.r.t. noise in the group assignment based on
the attributes. As expected, the improvement drops as more noise
are injected into the hierarchy. Nonetheless, it achieves compara-
ble performance to baseline using a completely random hierarchy.
Through simulation, we also demonstrate that HSM’s advantage
generalizes across different user models where user-item interac-
tion follows different generative models.

2 RELATEDWORK
2.1 Matrix Factorization and Neural Networks

in Recommender Systems
Historically, the matrix completion problem has been extensively
studied in the algorithmic research of recommender systems. The
techniques developed can model both user explicit (e.g. five-star
preference ratings) or implicit feedback (e.g. click, purchase, watch)
data. Nowadays, more and more researchers focus on designing
models for broader user implicit feedback especially in industrial
recommender systems where users’ natural engagement with prod-
ucts provide a large amount of useful information on users’ interest.
For instance, Hu et al. [14] proposed collaborative filtering models
for implicit feedback data, utilizing a efficient negative sampling
technique to address the modeling challenge that only implicit pos-
itive labels are observed in these recommender systems, i.e., only
items interacted with by users are observed while user preference
information on unobserved items are missing. Negative sampling
technique has been widely used and demonstrated effective in many
applications, e.g. K. Chen and T. Chen et al.’s work on tweet and
followee recommendation [5, 6].

To deal with cold-starting items and users, the state-of-the-art
generalized matrix factorization models, e.g. SVDFeature [7] and
Factorization Machine [20] can easily incorporate item side infor-
mation as input. Compared with user ID or item ID alone, utilizing
these more higher-level user or item features are important for
generalization when there are not many observations for the user
or item.

Recently, deep learning has shown great accuracy improvements
in various domain tasks, including recommender systems where
temporally long-term dependencies might be important for model-
ing user behavior. Wu et al.’s recent work [25] models users and
movies with a LSTM autoregressive model in movie recommen-
dation systems and offers better prediction accuracy than the tra-
ditional matrix factorization techniques. LSTM is a widely used
recurrent neural networks due to its advantage of modeling long-
term dependencies.

2.2 Multi-Task Learning
Multi-task learning (MTL) has led to successes in many applications
of machine learning. Ruder [21] gave a comprehensive overview
on MTL particularly in deep neutral networks. They discussed
different auxiliary tasks that can be used to leverage MTL when
even only one task is the target. They pointed out that in the current
status of the field, finding an auxiliary task is largely based on the
assumption that the auxiliary task should be related to the main

task in some way and the field still does not have a good notion of
when two tasks should be considered similar or related.

One quite similar finding to our work is in Caruana et al’s
work [4], which showed that some features are more useful as extra
outputs than as inputs. They demonstrated through two regression
problems and one classification problem that using some features
as an output can enable learning a mapping from the other inputs to
that feature which turns out to be more useful that the feature val-
ues themselves provided as input. In our work, we present similar
findings but with a special focus on recommender systems and item
categorical features. Different from co-factorization proposed by
Singh et al. [23] where the matrix of item-attribute co-occurrences
was fitted together, we additionally model a derived user-attribute
matrix where the attributes come from items that users interacted
with.

2.3 Hierarchical Prediction
As mentioned previously, hierarchical softmax was proposed by
Morin and Bengio in [18] where it is used on top of a binary word
hierarchywithmultiple levels. They demonstrated that theoretically
hierarchical softmax can have exponential speed-up in both training
and testing (if only the top-1 prediction is needed during testing).
If predictions on all items in the vocabulary are needed, there is
a constant factor overhead (which is the case in recommender
systems). In the work, they also proposed to share parameters
across the hierarchy which we adopted in our work (see the next
section). Empirically, they show that a hierarchical decomposition
of the softmax yields a speed-up of about 200 both during training
and inference. The limitation of this work is that the hierarchy was
manually curated through data-driven clustering process. Mnih
and Hinton [17] further proposed a simple and fast feature-based
algorithm for automatic construction of such hierarchies.

We applied the hierarchical softmax model in recommender
systems based on hierarchies induced by the naturally available
item categorical attributes. In addition, we made changes on top
of the model for tractability issues when the model has a huge flat
hierarchy instead of the binary deep hierarchy used in [18] and
when the hierarchy is very unbalanced which is often the case
for these categorical attributes. Interestingly, Covington et al. [8]
briefly mentioned their work of using hierarchical softmax model
for Youtube recommendation, which did not achieve comparable
results compared with random negative samples. However, we rec-
ognize that the clusters used there seem to be randomly assigned
(which is confirmed in one of our experiments) because they men-
tioned that traversing each node in the hierarchical tree involves
discriminating between sets of classes that are often unrelated.

Hierarchical classification with decision trees has also been used
in genomics. Vens et al. [24] proposed hierarchical multi-label clas-
sification (HMC) trees for hierarchical multi-label classification
tasks. Compared with two baseline approaches: hierarchical single-
label classification (HSC) and single-label classification (SC) trees,
HMC trees outperform along three dimensions: predictive accuracy,
model size and induction time. The hierarchy of classes can be a
tree where each class has only one parent, or a Directed Acyclic
Graph (DAG) where classes may have multiple parents. They show
how HMC trees can be extended to support this setting. In our

321

Categorical-Attributes-Based Item Classification for Recommender Systems RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

work, we studied the case where only one categorical attribute is
selected for the item hierarchy and each item can only belong to
one categorical attribute value, i.e., one parent in the hierarchical
structure. We treat it as interesting future work to support modeling
multiple-parents or multi-attribute hierarchical classification for
recommender systems.

3 UTILIZING SIDE INFORMATION IN
RECOMMENDER SYSTEMS

Recommendation modeling involves modeling both users and the
item prediction. Most of the techniques model the current user
state and items with a low-dimensional vector space and predict the
user’s preferences on items by matching the two. Assume we have
a user state model that combines user profile and context factors
and lies in a low-dimensional space Rd . Denote s = s(u) ∈ Rd as
the current user’s state vector in which u represents the user ID,
profile and history in the system. We also sometimes use notation
u to refer to a specific user ID depending on the context. Denote
o = o(v) ∈ Rd as the item representation vector where v represents
the item ID a and the properties of an item including the item side
information. Denote θ as the model parameters of both s and o.

With the user state s and item representation o, making pre-
dictions on items involves modeling the match between the two
f (u,o). This prediction function is used to approximate or learn
from user feedback signals, which could be user explicit ratings on
items or user implicit actions (e.g. interaction, consumption etc.)
on items. Here we focus on the case of implicit action feedback.
In most recommender systems, this implies that the system only
observes positive feedback missing negative observations, e.g., we
observe a user consumes an item but we miss information on the
user’s preference on other unobserved items. Negative sampling
is widely used in this implicit feedback case, i.e., randomly sample
some items in the item space as the "pseudo-negative" observations.

Three possible ways of fitting the observations can be found in
prior literature: logistic model (treating the observations as follow-
ing independent Bernoulli distributions), pair-wise ranking model
(modeling the relative preference order) and softmaxmodel (treating
the feedback as an observation of an exclusive multi-class classifica-
tion model). In this work, we focus on the softmax model because
on one hand one of our proposed approaches – hierarchical softmax
– can only be applied in this case and on the other hand softmax
model has been demonstrated to have benefits [26]. The softmax
model is shown in Equation 1, where i are k are indexing in the
α + 1 observations, which include one positive and other sampled
negative ones, i.e., α is the negative sample size and a here is an
one-hot encoded representation of the positive and negative item
IDs.

p̂a (ai = 1) = exp(f (s,oi))∑α+1
k=1 exp(f (s,ok))

(1)

3.1 Matrix Factorization: SVDFeature
Many matrix factorization based techniques have been developed
to utilize user and item side information to make predictions in
recommender systems, e.g., Factorization Machine and SVDFeature.
In this work, without losing generality, we examine the SVDFeature

model. The SVDFeaturemodel has the following prediction function
shown in Equation 2, 3, 4 (the bias terms are skipped for simplicity
of presentation). In other words, SVDFeature represents the user
state and item vector as the sum of the vectors of their ID and
side information. In the simplest case where users are represented
as simple embedding vectors U and items asW ∈ RNxd which
have a categorical attribute represented as V ∈ RMxd , s becomes
s(u) = Uu and o becomes o(v) =Wa +Vc where a represents the
item ID and c represents a’s categorical attribute ID.

f (u,o) = sT o (2)

s(u) =
∑
i
ui · θui = Uu (3)

o(v) =
∑
j
vj · θvj =Wa +Vc (4)

3.2 Neural Networks: RNN
Neural network based techniques can incorporate side information
as well, e.g., by embedding not only the user or item ID but also
their side information into a low-dimensional space and then con-
catenating the vectors to have a unified vector representation as the
input of a neural network. Without losing generality, we examined
a Recurrent-Neural Network (RNN) based model that models a user
as the user’s temporal interaction sequence in the system [12, 25].
For a user sequence, each step is a vector representation of the item
that the user interacted with (or liked, consumed), concatenating
the embeddings of not only the item ID (input-side embedding of
an item) but also its side information, overall denoted as CAT (θut).
One widely used step transition model for the sequence model
is LSTM [13]. Additional layers of transformation can be applied
before modeling the transition with LSTM, e.g., through a layer
of Rectified Linear Units (ReLU) [19]. In summary (as illustrated
in Figure 1), a RNN model has the following user state model s in
Equation 5 where t represents the time step.

st (u) = LSTM(st−1(u),ReLU (CAT (θut))) (5)

In order to make predictions, the RNN model introduces addi-
tional output-side embedding vectors for itemsW . Therefore, the
prediction function of the RNN model becomes Equation 6:

f (u,o) = sTWa (6)

4 PREDICTING ITEM CATEGORICAL
ATTRIBUTES

In this work, we propose to enhance the previous recommendation
models by further utilizing the item side information in the output
part. Specifically, we introduce an auxiliary task making predictions
on not only the item (i.e., the match f (u,a)) but also on one of
the item’s categorical attributes. We only consider utilizing one
categorical attribute at a time and the case that there is only one
value associated with the attribute. In cases where there aremultiple
values for the attribute, we pick one according to the criterion of

322

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Qian Zhao et al.

Table 1: Results for the Behance data set: The testing MAP@k (k=5 or 20) and AUC of the item and attribute prediction tasks
for MTL and HSM on top of both SVDFeature and RNN with the owner as the auxiliary task. The numbers in the parentheses
are the MAP improvement relative to the baseline model SVDFeature or RNN. Best item MAP and AUC are bolded.

Model Item MAP@5 Item MAP@20 Item AUC Attribute MAP@5 Attribute MAP@20 Attribute AUC
SVDFeature 0.0035 0.0046 0.759 N.A. N.A. N.A.

SVDFeature+MTL 0.0044 (+25.7%) 0.0057 (+23.9%) 0.758 (-1.3%) 0.020 0.023 0.845
SVDFeature+HSM 0.0046 (+31.4%) 0.0066 (+43.4%) 0.813 (+7.1%) 0.025 0.029 0.847

RNN 0.0099 0.0121 0.758 N.A. N.A. N.A.
RNN+MTL 0.0104 (+5%) 0.0129 (+6.6%) 0.759 (+1.3%) 0.027 0.031 0.839
RNN+HSM 0.0129 (+30.3%) 0.0159 (+31.4%) 0.787 (+3.8%) 0.024 0.028 0.842

Table 2: Results for the Behance data set: The testingMAP@k (k=5 or 20) andAUCof the item and attribute prediction tasks for
SVDFeature and SVDFeature+HSMwhose group assignment has different amount of random noises introduced with probabil-
ity p=0.1, 0.2, 0.6 or 1.0 where 1.0 means items are completely randomly assigned into groups without using any information
from the owner attribute although the number of groups is the same as the number of unique owners. The numbers in the
parentheses are the MAP or AUC improvement relative to the baseline model.

Model Noise Item MAP@5 Item MAP@20 Item AUC Attribute MAP@5 Attribute MAP@20 Attribute AUC
SVDFeature N.A. 0.0035 0.0046 0.759 N.A. N.A. N.A.

SVDFeature+HSM

0.0 0.0046 (+31.4%) 0.0066 (+43.4%) 0.813 (+7.1%) 0.025 0.029 0.842
0.1 0.0045 (+28.5%) 0.0062 (+34.7%) 0.804 (+5.9%) 0.020 0.023 0.842
0.2 0.0047 (+34.2%) 0.0064 (+39.1%) 0.794 (+4.6%) 0.016 0.019 0.830
0.6 0.0038 (+8.5%) 0.0049 (+6.5%) 0.765 (+0.7%) 0.004 0.006 0.774
1.0 0.0029 (-17.1%) 0.0039 (-15.2%) 0.754 (-0.6%) 0.003 0.004 0.497

Item at Embedding Item at Side Information Embedding

ReLU

RNN (LSTM)

Softmax or HSM

Figure 1: The architecture of the RNN model.

TF-IDF [16]. Overcoming this limitation (elaborated more later in
the end) is an interesting direction of future research which could be
complex by itself. We focus on initially demonstrating the efficacy
of predicting item side information in this work.

This proposed approach can be applied in both the SVDFeature
and RNN models. In either case, our approach does not change the
user state model s . However, for SVDFeature, the item prediction
model as in Equation 4 is changed to only useWa , i.e., o(v) =Wa ,
leaving out Vc for the introduced auxiliary task.

4.1 Multi-Task Learning
In the MTL approach, we predict the categorical attribute by simply
sharing the same user state representation s of the item prediction
model. Denote the output-side embedding of a categorical attribute
as V . For a positive observation of a, denote its attribute ID as c .
Similar to the negative sampling for a positive item, β negative
attribute IDs are randomly sampled to build the following softmax

prediction model in Equation 8 where c is an one-hot encoded
representation of the positive and sampled negative attribute IDs:

д(u,o) = sTVc (7)

p̂c (ci = 1) = exp(д(u,oi))∑β+1
k=1 exp(д(u,ok))

(8)

4.2 Hierarchical Softmax
In the HSM approach [18], we sequentially make predictions along
a hierarchical structure of the attribute and item. The estimated
probability for an item becomes the product of the estimated at-
tribute probability associated with the item and the estimated item
probability within the group of items defined by the attribute. To
be more precise, let Kc be the items belonging to the attribute c’s
group. Then,

p̂a = p̂c · p̂a |c (9)

p̂a |c (ai = 1|Kc) =
exp(f (s,oi))∑

k ∈Kc exp(f (s,ok))
(10)

In real-word applications, the grouping induced by a categorical
attribute can be very unbalanced, so that for some attribute IDs, a
large group of items are involved while for others only a few. To
address this problem, we introduce a sub-vocabulary sampling step,
i.e., when the number of items involved by the attribute ID is greater
than a threshold, we down-sample it to the threshold randomly. Al-
gorithm 1 summarizes the steps training a HSMmodel. Algorithm 2
summarizes the HSM inference procedure after training the model.

323

Categorical-Attributes-Based Item Classification for Recommender Systems RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

Algorithm 1: The algorithm for training a two-level HSM
model with a large unbalanced hierarchy induced by a categor-
ical attribute.
Data: ut ,at , cat for t = 1, ...,T , where ut is a user history

representation; at is the item that was acted on by the
user at time step t ; cat is the associated value of a
selected categorical attribute of the item.

Model Parameters: θ ,W ,V
Hyper Parameters: the number of attribute samples α < N
where N is the attribute vocabulary size, the number of item
samples β < M where M is the item vocabulary size.

1 for t=1,...,T do
2 Run the user state model to get current user state

representation st (ut ,θ)
3 Excluding cat , randomly sample α negative attribute

samples from the attribute vocabulary.
4 Compute the negative log likelihood loss L(cat) of p̂cat in

Equation 8.
5 Get the group of items with attribute value cat , i.e. Kc .
6 Excluding at , randomly sample β negative item samples

from the item vocabulary.
7 Compute the negative log likelihood loss L′(at) of �pat |cat

in Equation 1.
8 Minimize the loss L(cat) + L′(at) using SGD [2] or

AdaGrad [9].
9 end

10 Repeat the for loop until convergence, e.g., the decrease of the
loss is less than certain threshold.

Result:W , V , θ

Algorithm 2: The inference algorithm of the two-level HSM
model.
Data: A user history representation u; an attribute-to-items

mapping Kc where c = 0, ...,M − 1.
Model Parameters: θ ,W ,V

1 Run the user state model to get current user state
representation s(u,θ)

2 Compute the predicted attribute probabilities p̂c as in
Equation 8 for all c .

3 Compute the within-group item probabilities p̂a |c as in
Equation 10 for all c and a.

4 Compute the final predicted item probabilities pa as in
Equation 9 for all a.

Result: pa for all a.

5 EXPERIMENTS AND RESULTS ON
BEHANCE DATA SET

In this section, we evaluate the proposed approaches of MTL and
HSM for both SVDFeature and RNN models with a real-world data
set: Behance [11]. Behance.net is an online community where users
can create arts and design projects and share their creation with
the community. It supports a feature appreciation through which
users can express their interest on projects created by others while
browsing in the site. In this application, the recommendation of

Table 3: The summary statistics of the Behance data set and
the distribution of the sizes of the attribute in terms of the
number of items.

Statistic Size Summary Size
#users 63,497 min 1
#items 178,788 25% 1
#owners 51487 median 2

#appreciations 1M 75% 4
max 153

projects to users can be formulated as predicting the probabilities
of a user appreciating the projects in the system.

The Behance data set we used was part of the data set collected
and released by He et al. [11]. The available item side information
is the owner or creator of the project. One project can possibly have
multiple owners, in which case we take the one with the highest
TF-IDF value [16] where IDF is computed across all the projects in
the data set. Table 3 shows the statistics of the data set along with
the distribution of the number of items belonging to the owners (a
highly skewed distribution).

We employ a temporal leave-one-out training and testing proce-
dure, i.e., for each user, the whole sequence of appreciated items
except the last one is used as the training data leaving the last one
for testing. We use the metrics of Mean Average Precision (MAP@k,
where k=5 and 20) and Area Under the ROC Curve (AUC). AUC
is evaluating whether the models can rank the last appreciated
item of a user (i.e. positive item) higher than a negative item ran-
domly sampled from all the items in the data set (excluding the last
appreciated item of the user).

We implemented all models based on TensorFlow [1] (Version
1.4.1, Python API; open sourced in GitHub 1). For all the models,
we use embedding dimension d = 32. They are trained until con-
vergence by running the AdaGrad algorithm with initial learning
rate η = 1.0 (we found this value better than the default η = 0.1).
The batch size of the AdaGrad minimization is 32, i.e., each batch
has 32 users’ appreciation sequences which involves on average
400 positive items. We use α = β = 2K for each batch, i.e., sampling
2K negative items (excluding the positive items) for each batch in
the item prediction softmax, attribute prediction softmax and the
sub-vocabulary sampling of the HSM model.

Table 1 shows the results. We see that both MAP@k and AUC
show consistent substantial improvement for HSM on top of both
SVDFeature and RNN. MTL shows substantial improvement in
terms of MAP@k but more improvement is observed on top of
SVDFeature than RNN. Interestingly, we observe that modeling
the user history sequence based on RNN is substantially better
than not modeling the sequence based on SVDFeature but the
improvement only manifests in terms of MAP@k, not in terms of
AUC. Although it is also possible to model the user history sequence
through embedding vector summation in SVDFeature, we chose not
to here because we want to see whether MTL or HSM can improve
on top of substantially different user models.

The MAP@k and AUC are much higher for the task of attribute
prediction than item prediction, which suggests that predicting

1https://github.com/grouplens/samantha

324

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Qian Zhao et al.

higher-level groups induced by the attributes are easier tasks than
directly predicting the lower-level item confirming with our hy-
pothesis at the beginning.

Table 2 shows how accuracy improvement is affected when
noise is introduced into the group assignment of items based on
attributes. When the noise p = 1.0, i.e., all items are randomly
assigned into a group, the HSM model achieves similar but slightly
worse performance than the baseline model, which shows that
adding additional random grouping in the output hurts probably
because the attributemodel struggles to learn a coherent embedding
for that group of items while those items are not similar to each
other at all.

Table 4: The summary statistics of the large scale industrial
data set and the distribution of the sizes of the attribute in
terms of the number of items.

Statistic Size Summary Topic Size Publisher Size
#users Hundreds of Millions min 1 1
#items 2M 25% 1 1
#topics 600K median 1 1

#publishers 800K 75% 3 2
#consumptions Hundreds of Billions max 38K 3.5K

6 IMPROVING RNN-BASED LARGE-SCALE
INDUSTRIAL PRODUCTION MODEL

We further evaluate the proposed approach on top of a large-scale
private industrial production model (RNN-based). Table 4 lists the
statistics of the data set and the distribution of the sizes of each
attribute used. The categorical attributes involved here are publisher
and topic. Each item in the data set is annotated with the most
relevant topic ID and each item has an unique publisher ID. They
are all embedded as the input of the RNN as shown in Equation
5 along with other input features used in the production model.
As Table 4 shows, the distribution of group sizes induced by these
attributes are extremely unbalanced.

The embedding dimension d = 256 and the initial learning rate
η = 0.1. Because of the size of the item space, we use 20K negative
samples for the item prediction softmax and attribute prediction
softmax. For the conditional item prediction task in the HSMmodel,
we limit using 400 negative samples for each attribute ID in the
batch (batch size is 128), in which case the effective number of
items involved each batch is 6K for the topic attribute and 2K for
the publisher attribute.

We employed a similar temporal leave-one-out training and test-
ing procedure in this data set. Table 5 shows the item prediction
accuracy measured by MAP@k (k=5 and 20). We see that both MTL
and HSM improve the recommendation accuracy, especially HSM,
which has around 20% accuracy gain across the two types of at-
tributes for MAP@5 while MAP@20 shows consistent but slightly
less accuracy improvement. MTL seems to depend on which at-
tribute to use because the improvement using the topic is much
larger (7.9% gain) than using the publisher (3.3% gain).

Table 6 shows how MAP changes when we introduce noises into
the item group assignment based on the attribute publisher running
the HSM model. It shows consistent results with the experiments
run on the Behance data set.

7 ANALYSIS AND SIMULATION
In this section, we investigate how introducing the auxiliary task
of predicting categorical attributes can help item prediction. We
focus on HSM here because it has more consistent and substantial
improvement. We did not come up with a theoretical explanation
but conducted analysis on the Behance data set and simulation
experiments to test a few hypotheses.

H1: Does hierarhical softmax have more improvement for the long-
tail items’ prediction (Yes). To answer this question, we analyze the
relationship between the popularity of the two items (one positive
and one randomly sampled negative) to be predicted for a user
(along with the popularity of their attributes) and whether SVDFea-
ture+HSM is better than SVDFeature (i.e., SVDFeature+HSM ranks
correctly while SVDFeature ranks incorrectly, referred to as the
Better variable here) based on the Behance data set. Popularity here
refers to the number of times an item or attribute appears in the
appreciation data set. We use the rank of an item or attribute’s pop-
ularity instead of the raw number. Table 7 shows the coefficients of
the popularity of items and attributes predicting the Better response
variable in a logistic regression model. We see that the effects of
item popularity are significant and their signs are positive (note
that higher values of popularity rank represent less popularity, i.e.
the tail). That the effect of attribute popularity is not significant
suggests the advantage of HSM does not favor more popularity
attributes.

H2: does the advantage of HSM generalize across different types of
generative models of users? (Yes) One hypothesis we have regarding
HSM is that it might better fit how users express interest and dis-
cover items, i.e., users have hierarchical interest (and shifting) along
the hierarchy of attributes and items and HSM better models that.
To investigate this question, we simulated two data sets of 1K users
based on two types of generative models: Single-Level versus Two-
Level within the framework of matrix factorization. Algorithms
3 and 4 show how user interactions are generated. Note that ku
and ka control the skewness of the user interest distribution in
the attributes (a user’s embedding vector is modeled as a sparse
distribution on the attribute embedding vectors) and the sizes of
the attributes in terms of the number of items.

After generating the simulated data sets, we trained two models
SVDFeature and SVDFeature+HSM. The training process is exact
the same as we trained the models for the real-application data
sets. Table 8 shows the accuracy results in terms of AUC of the
two models (d = 32, negative sampling α = β = 200). We observe
that HSM not only improves substantially for the two-level data
set, whose generative process is a better fit of the HSM model,
but also for the single-level data set. This analysis suggests that
overall HSM based on informative item grouping is a more powerful
modeling technique than one-level flat softmax generalizing across
environments of different user models of preferences and behaviors.

8 DISCUSSION, LIMITATION AND FUTURE
WORK

Our experimental results demonstrated that using items’ categorical
attributes through eitherMTL or HSM can benefit item prediction in
recommendation problems. Particularly for HSM, from the softmax
normalization perspective, our results suggest that the negative

325

Categorical-Attributes-Based Item Classification for Recommender Systems RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

Table 5: Results for the large scale data set: The testing MAP@k (k=5 or 20) of the item and attribute prediction tasks for MTL
and HSM on top of RNN. The numbers in the parentheses are the MAP improvement relative to the baseline RNNmodel. Best
item MAP numbers are bolded.

Model Attribute Item MAP@5 Item MAP@20 Attribute MAP@5 Attribute MAP@20
RNN N.A. 0.151 0.171 N.A. N.A.

RNN+MTL Topic 0.163 (+7.9%) 0.178 (+4.0%) 0.336 0.349
Publisher 0.156 (+3.3%) 0.174 (+1.7%) 0.293 0.309

RNN+HSM Topic 0.184 (+21.8%) 0.197 (+15.2%) 0.337 0.351
Publisher 0.182 (+20.5%) 0.197 (+15.2%) 0.295 0.310

Table 6: Results for the large scale data set: The testing MAP@k (k=5 or 20) of the item and publisher prediction tasks for the
baseline model and HSMmodel whose group assignment has different amount of random noises introduced with probability
p=0.1, 0.2, 0.6 or 1.0 where 1.0means items are completely randomly assigned into groups without using any information from
the publisher attribute although the number of groups is the same as the number of unique publishers. The numbers in the
parentheses are the MAP improvement relative to the baseline RNN model.

Model Randomization Item MAP@5 Item MAP@20 Publisher MAP@5 Publisher MAP@20
RNN N.A. 0.151 0.171 N.A. N.A.

RNN+HSM

0.0 0.182 (+20.5%) 0.197 (+15.2%) 0.295 0.310
0.1 0.168 (+11.2%) 0.182 (+6.4%) 0.269 0.281
0.2 0.166 (+9.9%) 0.180 (+5.2%) 0.250 0.265
0.6 0.152 (+0.6%) 0.165 (-3.5%) 0.183 0.196
1.0 0.150 (-0.6%) 0.163 (-4.6%) 0.151 0.163

Figure 2: The t-SNE embeding visualization of the item embeddings and topic embeddings for the single-task baseline and
hierarchical softmax models.

Table 7: The coefficients (standard errors) of the popu-
larity of items and attributes predicting whether SVDFea-
ture+HSM is better than SVDFeature in a logistic regression
model. Each user has one observation. ***p<0.001.

Popularity Coef. (Std.)
log(true item rank) 0.613 (0.012) ***
log(false item rank) 0.051 (0.008) ***
log(true attribute rank) 0.004 (0.011)
log(false attribute rank) 0.008 (0.009

samples used for normalization in Equation 10 are more effective
than the random negative samples in Equation 1. Given that the
higher-level differences of the items are handled by the higher-
level attribute prediction task, the item-related model parameters

Table 8: The AUCs of SVDFeature and SVDFeature+HSM on
top of two simulated data sets based on two types of genera-
tive user models.

Data Set Model AUC

Single-Level SVDFeature 0.592
SVDFeature+HSM 0.668 (+12.8%)

Two-Level SVDFeature 0.652
SVDFeature+HSM 0.705 (+8.1%)

can focus on learning more nuanced patterns within the attribute
group. Figure 2 is an illustration of the t-SNE [15] embeddings
of the item embedding in the baseline RNN model and the item,
topic embeddings in the RNN+HSM model. We see that the topic
embeddings encode some large-scale grouping structure in the item

326

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Qian Zhao et al.

Algorithm 3: The simulation algorithm for generating item-
attribute mapping and item/attribute embeddings for gener-
ating user history interactions in Algorithm 4. ∼i represents
sampling i times according to certain distribution.
Para : item vocabulary size N = 5000; attribute vocabulary

sizeM = 500; the shape of the Gamma distribution for
item assignment in attributes ka = 1.0. Embedding
dimension d = 32

1 #generating assignment of items to attributes.
2 α ∈ RM ∼M Gamma(shape = ka , scale = 1.0)
3 C ∈ ZM
4 for i=1,...,N do
5 ϕ ∈ RM ∼ Dirichlet(α)
6 Ci ∼ Cateдorical(ϕ)
7 end
8 #generating attribute embedding weights.
9 V ∈ RMxd ∼ Uni f orm(0, 1)

10 #generating item embedding weights.
11 W ∈ RNxd ∼N Gaussian(VCa , 0.01),a = 1 : N

Result:W ,V ,C

Algorithm 4: The simulation algorithm for sampling the in-
teraction history of users. ∼i represents sampling i times ac-
cording to certain distribution.
Para :W , V , C from Algorithm 3; the shape of the Gamma

distribution for sampling user interest in attributes
ku = 1.0; embedding dimension d = 32; the number of
users to generatem = 1000; the number of items (and
their corresponding attributes) to generate n for each
user; the type of the generative model type : Single-Level
or Two-Level

1 for i=1,...,m do
2 #generating user embedding weights.
3 α ∈ RM ∼M Gamma(shape = ku , scale = 1.0)
4 ϕ ∈ RM ∼ Dirichlet(α)
5 u = VTϕ

6 #generating the item according to user attribute interest.
7 if type is Single-Level then
8 a ∈ Zn ∼n So f tmax(Wu)
9 c ∈ Zn , where c j = Caj , j = 1 : n

10 end
11 else if type is Two-Level then
12 c ∈ Zn ∼n So f tmax(Vu)
13 a ∈ Zn , where aj ∼ So f tmax(Wc ju),Wc j is the

embeddings of the items involved by c j , j = 1 : n.
14 end
15 end

Result: them tuples of (i,a, c)

vocabulary. The item embeddings in the baseline RNN model seem
to be more clustered than the RNN+HSM model.

In this work, the classification models are limited to utilize only
one categorical attribute, we consider it as interesting future work

to combine multiple attributes through multi-layer hierarchical
softmax or multi-task learning predicting multiple dimensions of
the item space to further improve. A challenge is that not only
the item-attribute dependency needs to be modeled, but also the
inter-dependencies among multiple attributes, e.g., given that a
user likes a topic, what is the probability that the user likes the
publishers within that topic, or alternatively, that the user likes
the topics within particular publishers (note that a publisher is the
user who created an item in the system). It is not intuitive to decide
what is the right dependency order. In either case, this hierarchical
prediction is inherently sequential, which resembles the gradient
boosting techniques to some extent [10].

In terms of applications, the proposed classification model is a
natural fit for grouped or categorized recommendation presentation
interfaces. For example, many recommender systems present their
recommendations grouped by topics, genres or categories instead
of using a combined top-N list. Besides, outside of recommender
systems, in any interface that supports browsing by topics or other
criteria can use the HSM model to personalize the browsing experi-
ence given that a user clicks certain topic link. Lastly, since these
attributes have nice interpretability from the user’s perspective,
the model may be used for eliciting user preferences interactively
in a conversational recommender system or the coarser-level ac-
tion space exploration in reinforcement learning for recommender
systems.

9 CONCLUSION
In this work, we propose models utilizing the readily available item
categorical attributes as output for multi-class classification-based
recommender systems. In our proposed models, we introduce struc-
tures induced by the item categorical attributes in the classification
softmax either through multi-task learning or hierarchical softmax.

In the multi-task learning case, along with the task of predicting
the next item that a user will act on, we also predict the higher-level
attribute value of the next item but still sharing the same user state
model, hypothesizing that this auxiliary task can benefit the item
model learning through transfer learning or regularization effects.

In the hierarchical softmax case, we not only introduce the same
auxiliary task sharing the same user state model, but also condi-
tion our item-level prediction task on the attribute-level prediction
output.

We demonstrate through experiments on real-world data sets
that these two approaches improve item-level prediction substan-
tially on top of the modeling frameworks of both matrix factor-
ization and neural networks. We demonstrate the robustness of
the hierarchical softmax approach by introducing noise in build-
ing the hierarchy and the its generalizability across different user
generative models through simulation experiments.

In summary, we show that introducing predicting categorical
attributes as auxiliary tasks in item prediction has substantial ad-
vantages for recommender applications. Despite unbalanced hier-
archies, in practice, the approach is relatively easy to apply and
fairly robust against noise in the categorical grouping. We hope this
result is particularly useful to other recommender practitioners.

327

Categorical-Attributes-Based Item Classification for Recommender Systems RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). http://tensorflow.org/ Software available from tensorflow.org.

[2] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010. Springer, 177–186.

[3] Rich Caruana. 1998. Multitask learning. In Learning to learn. Springer, 95–133.
[4] Rich Caruana and Virginia R De Sa. 1997. Promoting poor features to supervisors:

Some inputs work better as outputs. In Advances in Neural Information Processing
Systems. 389–395.

[5] Kailong Chen, Tianqi Chen, Guoqing Zheng, Ou Jin, Enpeng Yao, and Yong
Yu. 2012. Collaborative personalized tweet recommendation. In Proceedings
of the 35th international ACM SIGIR conference on Research and development in
information retrieval. ACM, 661–670.

[6] Tianqi Chen, Linpeng Tang, Qin Liu, Diyi Yang, Saining Xie, Xuezhi Cao, Chun-
yang Wu, Enpeng Yao, Zhengyang Liu, Zhansheng Jiang, et al. 2012. Combining
factorization model and additive forest for collaborative followee recommenda-
tion. KDD CUP (2012).

[7] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong
Yu. 2012. Svdfeature: a toolkit for feature-based collaborative filtering. Journal
of Machine Learning Research 13, Dec (2012), 3619–3622.

[8] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[9] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[10] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[11] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. 2016. Vista: a
visually, socially, and temporally-aware model for artistic recommendation. In
Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 309–316.

[12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[15] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[16] Christopher DManning, Prabhakar Raghavan, andHinrich Schütze. 2008. Scoring,
term weighting and the vector space model. Introduction to information retrieval
100 (2008), 2–4.

[17] Andriy Mnih and Geoffrey E Hinton. 2009. A scalable hierarchical distributed
language model. InAdvances in neural information processing systems. 1081–1088.

[18] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural
Network Language Model.. In Aistats, Vol. 5. 246–252.

[19] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[20] Steffen Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995–1000.

[21] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[22] Shilad Sen, Jesse Vig, and John Riedl. 2009. Tagommenders: connecting users to
items through tags. In Proceedings of the 18th international conference on World
wide web. ACM, 671–680.

[23] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective matrix
factorization. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 650–658.

[24] Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik Blockeel.
2008. Decision trees for hierarchical multi-label classification. Machine Learning
73, 2 (2008), 185–214.

[25] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 495–503.

[26] Shuang-Hong Yang, Bo Long, Alexander J Smola, Hongyuan Zha, and Zhao-
hui Zheng. 2011. Collaborative competitive filtering: learning recommender

using context of user choice. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. ACM, 295–304.

328

http://tensorflow.org/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Matrix Factorization and Neural Networks in Recommender Systems
	2.2 Multi-Task Learning
	2.3 Hierarchical Prediction

	3 Utilizing Side Information in Recommender Systems
	3.1 Matrix Factorization: SVDFeature
	3.2 Neural Networks: RNN

	4 Predicting Item Categorical Attributes
	4.1 Multi-Task Learning
	4.2 Hierarchical Softmax

	5 Experiments and Results on Behance Data Set
	6 Improving RNN-Based Large-Scale Industrial Production Model
	7 Analysis and Simulation
	8 Discussion, Limitation and Future Work
	9 Conclusion
	References

