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Abstract Given multimillion-node graphs such as “who-follows-whom”, “patent-cites-
patent”, “user-likes-page” and “actor/director-makes-movie” networks, how can we find
unexpected behaviors? When companies operate on the graphs with monetary incentives
to sell Twitter “Followers” and Facebook page “Likes”, the graphs show strange connec-
tivity patterns. In this paper, we study a complete graph from a large Twitter-style social
network, spanning up to 3.33billion edges. We report strange deviations from typical pat-
terns like smooth degree distributions. We find that such deviations are often due to “lockstep
behavior” that large groups of followers connect to the same groups of followees. Our first
contribution is that we study strange patterns on the adjacency matrix and in the spectral
subspaces with respect to several flavors of lockstep. We discover that (a) the lockstep behav-
iors on the graph shape dense “block” in its adjacency matrix and creates “rays” in spectral
subspaces, and (b) partially overlapping of the behaviors shape “staircase” in its adjacency
matrix and creates “pearls” in spectral subspaces. The second contribution is that we provide
a fast algorithm, using the discovery as a guide for practitioners, to detect users who offer
the lockstep behaviors in undirected/directed/bipartite graphs. We carry out extensive exper-
iments on both synthetic and real datasets, as well as public datasets from IMDb and US
Patent. The results demonstrate the scalability and effectiveness of our proposed algorithm.

Keywords Lockstep behavior · Connectivity pattern · Spectral subspace · Propagation
method · Singular vector

1 Introduction

Given a large-scale graph from different kinds of applications such as social networks, patent
citation networks and phone call networks, how canwe catch strange user behaviors, and how
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Fig. 1 The lockstep behavioral pattern is common in many graph-based applications such as social networks,
patent citations and IMDb. The strange behaviors create lockstep block that is too big and too dense to occur
in the undirected/directed/bipartite graphs

can we find intriguing and unexpected connectivity patterns? While the strange behaviors
have been documented across services ranging from telecommunication fraud [1] to deceptive
Ebay’s reviews [2] to ill-gotten Facebook’s page-likes [3], here we study the common strange
behavior patterns and attempt developing a general, effectivemethod to catch such behaviors.

Figure 1 shows three examples of lockstep behaviors. (a) In Facebook/Twitter-style social
networks that can be represented with undirected/directed graphs, some companies set up
thousands or even millions of botnets to act together, consistently connect to the same group
of followees (customers) to increase their market value. Therefore, though the followees are
not popular, they have a large number of followers that are probably paid to follow or created
by a script. These lockstep behaviors create large, dense blocks in the adjacencymatrix. (b) In
patent citation networks, authors/ownerswho areworking on the same topic/project often cite
the relevant patents of their community. (c) In actor/director-movie networks (IMDb, Movie-
Lens, Netflix, etc.), actors/actresses/directors often collaborate with their friends because
close relationships bring easy communication for better understanding of the roles in movies.
These networks can be represented with bipartite graphs. Note that lockstep behaviors that a
group of actors and directors consistently join a group of movies create dense blocks in the
adjacency matrix. The lockstep behavioral pattern is common in many graph-based appli-
cations, and hence an important and interesting question is how to catch the near-full dense
blocks, i.e., catch those lockstep behavioral links?
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Fig. 2 How can we catch non-overlapping and partially overlapping lockstep behaviors? How can we catch
dense but not 100%dense lockstep blocks in a?How canwe catch the blocks when they have overlaps between
each other? In b, the customers get benefits (high follower number) from three groups of botnets but not fully
connected to them

In reality, the problem is not that easy. On huge social networks, there are many botnet
services that build lockstep behaviors to increase their customers’ follower number. Such
behaviors distort the network structure and have been harmful to the ordinary users’ social
experience (causing distrust, frauds, spams, etc.). The botnet services have developed strate-
gies to evade the detection. One is to make the blocks of less density. For example, in Fig. 2a,
a new difficult problem is how to catch dense but not 100% dense lockstep blocks. When is
a block too large and dense enough to occur in the graph? Figure 2b presents how several
groups of botnets connect to their customers. The botnet groups often share customer and
thus their lockstep blocks have partially overlaps.How can we catch the partially overlapping
lockstep behaviors?

Several recent studies have used graph data to characterize connectivity patterns, with
a focus on understanding the community structure [4–6] and the cluster property [7,8].
However, no analysis was presented to demonstrate what strange connectivity patterns we
can infer strange behaviors fromandhow to catch the strange behaviors. In this paper,wework
on a complete, directed graph from Tencent Weibo, one of the most popular microblogging
services in China. The graph was crawled in January 2011, and it has more than 117 million
users and 3.33 billion edges. We study users’ following behaviors from connectivity patterns
in Weibo graph. We discuss different flavors of “lockstep” such as no lockstep (Fig. 3a, b),
non-overlapping lockstep (Fig. 3c, d) or partially overlapping lockstep patterns (Fig. 3e, f).
We characterize connectivity patterns in the adjacency matrix of the graph and examine the
associated patterns in spectral subspaces.

Figure 3a, c, e plot the connectivities, i.e., nonzero entries in the adjacency matrix, in
which a black point shows that the follower node on the X-axis connects to the followee node
on the Y-axis. The dense, black “blocks” created by lockstep behaviors are highlighted at the
bottom left corner by the dashed lines. Figure 3b, d, f plot every follower node by its values
in a pair of left-singular vectors of the matrix. These figures visualize the spectral subspaces,
called spectral-subspace plot and the dashed lines are X-axis and Y-axis.
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Fig. 3 Lockstep behavior shows specific connectivity patterns and strange patterns in spectral subspaces: On
synthetic graph, followers are around the origin in all spectral subspaces. OnWeibo, non-overlapping lockstep
behaviors of followers in group F0 shape a dense “block” in adjacency matrix and create “rays” in spectral
subspace. Overlapping lockstep behaviors of followers in group F1–F3 create a “staircase” and “pearls”. a
Synthetic random graph, b around the origin in spectral subspace, c “block” in adjacency matrix, d “rays” in
spectral subspace, e “staircase” in adjacency matrix, f “pearls” in spectral subspace

Definition 1.1 (Spectral-subspace plot) Spectral subspace is spanned by a pair of singular
vectors of the adjacency matrix of a given graph. A spectral-subspace plot is a 2-dimensional
plot where nodes in the graph are represented by dots in the spectral subspace.

For example, Fig. 3f plots all the follower nodes in a spectral subspace spanned by the 2rd

and 8th left-singular vectors of the adjacency matrix. Our discussion is as follows, while we
use the terms in Table 1 to notate the patterns.

– No lockstep behavior: According to the Chung-Lu model [9], we generate a random
power law graph where no lockstep behavior exists. The adjacency matrix in Fig. 3a has
no large, dense blocks. We study every 2-dimensional spectral subspace of this synthetic
graph and observe that follower nodes are around the original point, as shown in Fig. 3b.

– Non-overlapping lockstep behavior: On Weibo, there is a group of followers in F0

connecting to the same group of followees. Thus, the adjacency matrix shows a large,
dense block (83,208 followers, 81.3% dense) in Fig. 3c. Figure 3d plots the spectral
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Table 1 Terms and their descriptions utilized in this paper

Term Description

“Staircase” Multiple cases of lockstep, forming overlapping blocks in spectral subspaces

“Rays” A set of points along a line that goes through the origin in the plots

“Pearls” A set of points that form spherical-like clusters within roughly same radius

Table 2 How to use spectral-subspace plots to infer strange behavior patterns: lockstep behavior patterns
show strange connectivity patterns on the graph

Behavior pattern Connectivity pattern Spectral subspace

No lockstep behavior Scatter Around the origin

Non-overlapping lockstep behavior “Blocks” “Rays”

Partially overlapping lockstep behavior “Staircase” “Pearls”

The spectral subspace of adjacency matrix presents strange shapes in the plots

subspace formed by the 1st and 3rd left-singular vectors. The followers in group F0

neatly align the Y-axis. We name this pattern “ray” according to the shape of the points.
– Partially overlapping lockstep behavior: A more surprising connectivity pattern we dis-

cover in the adjacency matrix is a “staircase” (10,052 followers, 43.1% dense), as shown
in Fig. 3e. Groups of followers in F1–F3 behave in lockstep, forming three more than
89% dense blocks. However, different from the non-overlapping case, F1–F2 have the
same large group of followees E1, and F1–F3 share a small group E2. The overlapping
lockstep behaviors of the followers create multiple micro-clusters of points that deviate
from the origin and lines in the 2nd and 8th left-singular vector subspace. Figure 3f shows
the spherical micro-clusters, roughly on a circle, so called “pearls” pattern.

A handbook (Table 2) shows how to use spectral-subspace plots to infer strange behavior
patterns. The key idea is that lockstep behavior patterns show strange connectivity patterns
on the graph, and the spectral subspace of adjacency matrix presents strange shapes in the
plots. The later methodology section explains the handbook in details.

Inspired by the observations, we propose a novel approach LockInfer, which includes
effective and efficient techniques that can learn the connectivity patterns and infer lockstep
behaviors. The contributions are as follows:

– Insights:Weoffer new insights into thefingerprints on the singular vectors left by different
types of synthetic lockstep behaviors. This gives us a set of rules as diagnostic tools that
data scientists and practitioners can use to discover strange connectivity patterns and
strange user behaviors.

– Algorithm: We propose a fast, scalable algorithm that exploits the insights above and
automatically find the followers that behave in lockstep. Run time of the algorithm is
linear to the number of edges in the graph. We demonstrate the effectiveness on both
synthetic data and real graphs including a “who-follows-whom” graph from Tencent
Weibo and other two public datasets from IMDb and US Patent.

The rest of the paper is organized as follows: Sect. 2 discusses related work. Section 3
provides insights from strange connectivity patterns, and Sect. 4 introduces our algorithm
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Table 3 Can previous approaches solve the problem: (a) detecting lockstep behavior forming (a.1) dense
“blocks”, (a.2) “staircase”; (b) interpreting “rays” and “pearls”; (c) being scalable for large graphs? We show
advantages of our proposed method LockInfer

(a.1) Detecting lock-
step behavior form-
ing “blocks”

(a.2) Detecting lock-
step behavior form-
ing “staircase”

(b) Selecting seeds
(“rays” and “pearls”)

(c) Scalability that
complexity ≤ O(E)

METIS × × × √
Crochet × × × √
AdjCluster

√ × × ×
SpokEn

√ × × √
CopyCatch

√ × × √
LockInfer

√ √ √ √

inferring lockstep behaviors. We give experimental results in Sect. 5 and conclude in Sect. 6.
A preliminary version could be found at [10].

2 Related work

There is a significant body on research related to our problem, which we categorize into four
groups: subgraph mining, graph partitioning, spectral clustering and community detection.
Specifically,we survey graphmining algorithmswith eigenvectors and spectral subspaces and
compare with our proposed LockInfer from the perspectives of effectiveness, interpretation
and scalability in Table 3.

Subgraph mining: A lot of work devotes to techniques for mining subgraphs from a vast
body of applications including hypertext data [11], computational biology and computer
networking [12]. The graph mining techniques like Crochet find quasi-clique patterns [13,
14], frequent graph [15], period subgraph [16], and dense subgraph [17–19].Non-overlapping
lockstep behavior forms dense bipartite subgraph instead of frequent graph and clique, but
the subgraph formed by partially overlapping lockstep behavior is not dense enough to be
detected by existing techniques.

Graph partitioning: The classical graph partitioning problem is to divide a graph into
components, such that the components are of about the same size and there are few connec-
tions between the components, as shown in METIS [20–23]. However, when the lockstep
behavior has overlapping parts, the graphs will have “no good cuts” [4]. Recently there are
works like CopyCatch on bipartite core detection using belief propagation [3,24–26]. But
how to appropriately choose the seeds remains challenging to all the related methods, while
we are giving a handbook on seed selection.

Spectral clustering: Spectral clustering methods have been widely used in large graphs
[27]. A spectral clustering algorithm was presented by [28] using eigenvectors of matrices
derived from the data. A spectral bi-partitioning algorithm was devised by [29] using the
second eigenvector of the normalized Laplacian matrix. The properties of spectral subspaces
have received much attention. SpokEn [30] shows that the singular vectors of mobile call
graphs, when plotted against each other, have separate lines along specific axes, which is
associated with the presence of tightly knit communities. However, the lines formed by nodes
in well-structured communities are not necessarily axes aligned [31].AdjCluster [32] give
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theoretical studies to explain the existence of orthogonal lines in the spectral subspaces.
However, existing works have not fully explained the (tilting) “rays” and even not discussed
about “pearls” in the plots.

Community detection: A great deal of work has been devoted to detecting communities
[33,34]. The idea of [4] captures the intuition of a cluster as set of users with better internal
connectivity than external connectivity. Researchers also infer community structure from
network topology by optimizing the modularity [35,36]. It is desirable that user of a com-
munity have a dense internal links and small number of links connected to users of other
communities. However, lockstep behavior patterns do not follow such hypothesis because
the users connect to different components of targets.

In summary, none of the above approaches provided a guide for practitioners to understand
real settings, namely, non-overlapping and partially overlapping lockstep behaviors, with an
explanation for the strange spectral patternsweobserve (“staircase” and “pearls”), and strange
connectivity patterns.

3 Guide for lockstep behavior inference

In this section, we first give a definition of “Lockstep Blocks” with a theoretical bound of the
density. Then we introduce how to plot spectral subspaces. By discussing different types of
lockstep behavior and showing the Lockstep Blocks that the behavior brings, we give a list
of rules on which type of lockstep behavior the spectral patterns and connectivity patterns
represent.

3.1 Definition of lockstep block

Let (S, T ) be the subgraph formed by the set of source nodes S and the set of target nodes T .
After appropriate ordering of the nodes, this is a block in the adjacency matrix. Let d(S, T ) be
the density of this block, i.e., fraction of nonzero entries. “Lockstep Blocks” are informally
defined as the blocks with density higher than what the uniformity assumption would expect.
Formally, the definition is as follows:

Definition 3.1 (Lockstep Block) In an adjacency matrix A (M × N and density D), a m × n
block (S, T ) is called a Lockstep Block, if and only if its density d(S, T ) is higher than the
uniformity threshold d̂: d(S, T )≥ d̂ , where d̂ is the threshold density, defined in Lemma 3.1.

The intuition is that large dense blocks represent lockstep behavior and thus they look
strange. The threshold density d̂ is estimated as follows:

Lemma 3.1 The threshold density d̂ ensures that a Lockstep Block is highly unlikely, i.e.,
on the average, it appears less than once, in the sparse matrix. Thus, the threshold density is

d̂ = 1

log(D)

(
1

n
log

m

M
+ 1

m
log

n

N

)
.

Proof If A is the adjacency matrix of a M × N (density D) Erdös-Rényi graph, Ai, j is
an independent Bernoulli random variable, each having probability D. The set of Lockstep
Blocks (m × n and density d ≥ d̂) on A is
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X (A, m, n, d̂) =
⎧⎨
⎩(S, T ) :

∑
i∈S

∑
j∈T

Ai, j ≥ mnd̂, S = {i1, . . . im}, T = { j1, . . . jn},

1 ≤ i1 < · · · < im ≤ M, 1 ≤ j1 < · · · < jm ≤ N

⎫⎬
⎭

Let Y = ∑
i∈S

∑
j∈T Ai, j and its expectation μ = E[Y ] = mnD, thus the expected

count of such Lockstep Blocks is

E[| X (A, m, n, d̂) |] =
(

M

m

)(
N

n

)
Pr [Y ≥ mnd̂].

According to Chernoff bound and Stirling’s approximation for large factorials,

Pr [Y ≥ mnd̂] ≤
((

D

d̂

)d̂(
1 − D

1 − d̂

)1−d̂
)mn

,

(
M

m

)(
N

n

)
∼

1

2π
√

mn

(
M

m

)m(
N

n

)n

.

Therefore, the logarithm of expected count is

logE[| X (A, m, n, d̂) |]

≤ −mn

(
d̂ · log d̂

D
+ (1 − d̂) · log 1 − d̂

1 − D

)
− m · log m

M
− n · log n

N
− log(2π

√
mn)

≤ −mnd̂ · log d̂

D
− m · log m

M
− n · log n

N

= −mnd̂ · (logd̂ − logD) − m · log m

M
− n · log n

N

≈ mnd̂ · logD − m · log m

M
− n · log n

N

where the block’s density d̂ is often much higher than the data’s density D, i.e., d̂ � D.
So the threshold density is

d̂ = 1

log(D)

(
1

n
log

m

M
+ 1

m
log

n

N

)
.

For any block in the graph with a density higher than d̂ , the expected count is below one,
which is the reason we name it as “Lockstep Block”.

For example, Figure 4 plots the expected count of blocks with a given scale on a 1M ×1M
(3M edges) graph. A 100 × 100 block is a “Lockstep Block” if d is higher than d̂ = 2%. �	

3.2 Spectral-subspace plot

The concept of “spectral-subspace plot” is fundamental. The intuition behind it is that it is a
visualization tool to help us see strange patterns. Let A be the N × N adjacency matrix of our
social graph. Each user can be envisioned as an N -dimensional point; a spectral-subspace
plot is a projection of those points in N dimensions, into a suitable 2-dimensional subspace.
Specifically, the subspace is spanned by two singular vectors.
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Fig. 4 A 100× 100 block is a “Lockstep Block” if d ≥ 2%: The expected number of blocks on a 1M × 1M
random graph decreases with the density increasing

More formally, the k-truncated singular value decomposition (SVD) is a factorization of
the form A = U�V T, where� is a k ×k diagonal matrix with the first k singular values, and
U and V are orthonormal matrices of dimensions N × k. U and V contain as their columns
the left- and right- singular vectors, respectively. Let un,i be the (n, i) entry of matrix U , and
similarly, vn,i is the entry of matrix V . The score un,i is the coordinate of n-th follower on
the i-th left-singular vector. Thus, we define (i, j)-left-spectral-subspace plot as the scatter
plot of the points (un,i , un, j ), for n = 1, . . . , N . This plot is exactly the projection of all
N followers on the i-th and j-th left-singular vectors. We have the symmetric definition for
the N users as followees: (i, j)-right-spectral-subspace plot is the scatter plot of the points
(vn,i , vn, j ), for n = 1, . . . , N . Clearly, it is easy to visualize such 2-dimensional plots; if
used carefully, the plots can reveal a lot of information about the adjacency matrix, as we
will show shortly.

As we had shown in Fig. 3(a, b), normally, given a random power law graph, we would
expect to find a cloud of points around the origin in all the spectral subspaces. However, we
find strange shapes (“ray” and “pearl”) in some left-spectral-subspace plots of Weibo data.
The question we want to answer here is: What kind of user behavior could cause “rays” and
“pearls” in spectral subspaces?

The short answer is different types of lockstep behavior. We explain below in more detail
what type of lockstep behavior generates such the odd patterns.

3.3 “Ray” for non-overlapping lockstep behavior

In order to enumerate all the types of lockstep behavior, we introduce concepts of “camou-
flage” and “fame”. If a group of followers F had monetary incentives to follow the same
group of followees E in lockstep, they could follow additional followees who are not in E ,
which is called “camouflage” that helps look normal. Similarly, the group of followees E
could have additional followers who are not in F , which we succinctly call “fame”.

With these concepts,we cannowstudyusers’ lockstepbehaviorwith synthetic datasets.We
first generate a 1M × 1M random power law graph and then inject two groups of followers
that separately operate in lockstep. In detail, we create 50 new followers in group F1 to
consistently follow 50 followees in group E1. Similarly, we create another new follower
group F2 to follow a followee group E2. Thus, if we plot black dots for nonzero entries in
the adjacency matrix in the left side of Fig. 5, we spot two 50 × 50 non-overlapping, dense
blocks. Properties of the non-overlapping lockstep behavior are discussed as follows:

123



M. Jiang et al.

Rule 1 (short “rays”): two blocks,
high density (90%), no “camouflage”, no “fame”

Rule 2 (long “rays”): two blocks,
low density (50%), no “camouflage”, no “fame”

Rule 3 (tilting “rays”): two blocks,
with “camouflage”, no “fame”

Rule 3 (tilting “rays”): two blocks,
no “camouflage”, with “fame”

Fig. 5 Rule 1–3 (“rays”): non-overlapping blocks in adjacency matrix
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– Density: High, if a new follower connects to 90% of the related followee group; low, if
the ratio is as small as 50%.

– Camouflage: With camouflage, if the follower connects to 0.1% of other followees; no
camouflage, if he follows only the new followees and no one else.

– Fame: With fame, if a new followee is also followed by 0.1% of other followers; no
fame, if the followee is followed by no one else.

The spectral subspaces formed by left- and right-singular vectors are plotted in the middle
and right of Fig. 5, respectively. We spot footprints left in these plots by the different types
of non-overlapping lockstep behavior and summarize the following rules:

– Rule 1 (short “rays”): If the lockstep behavior of followers is compact on the graph, the
adjacency matrix contains one or more non-overlapping blocks of high density like 90%.
The spectral-subspace plots show short rays: a set of points that densely fall along a line
that goes through the origin.

– Rule 2 (long “rays”): If a group of followers and a group of followees are consistently
but loosely connected, the adjacency matrix contains blocks of low density like 50%.
The plots show long rays: the rays stretch into lines aligned with the axes and elongate
toward the origin.

– Rule 3 (tilting “rays”): If the follower group has “camouflage” or the followee group
has “fame”, the adjacency matrix shows sparse external connections outside the blocks.
Different from Rule 1–2, a more messy set of rays come out of the origin at different
angles, called tilting rays.

Besides the practical proof, we use matrix decomposition theory [37] to prove the “rays”
shape. Suppose that in random matrix A ∈ R

N×N , we have two dense blocks A1 ∈ R

n1×n1

and A2 ∈ R

n2×n2 . We denote the rest of the random matrix by A0 ∈ R

(N−n1−n2)×(N−n1−n2).
Without essential difference, we focus on the left-singular vectors and denote the 1st and the
2nd vector by u1 = [u11,u12,u10]T and u2 = [u21,u22,u20]T. If the two blocks have no
overlap, we have ⎡

⎣A1A1
T

A2A2
T

A0A0
T

⎤
⎦

⎡
⎣u11
u12
u10

⎤
⎦ = λ1

⎡
⎣u11
u12
u10

⎤
⎦

⎡
⎣A1A1

T

A2A2
T

A0A0
T

⎤
⎦

⎡
⎣u21
u22
u20

⎤
⎦ = λ2

⎡
⎣u21
u22
u20

⎤
⎦

u11Tu21 + u12Tu22 + u10Tu20 = 0

trace(A1A1
T) > trace(A2A2

T) � trace(A0A0
T)

||u11||2 + ||u12||2 + ||u10||2 = 1

||u21||2 + ||u22||2 + ||u20||2 = 1

So, we assume that u10 = u20 = 0. Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1A1
Tu11 = λ1u11

A2A2
Tu12 = λ1u12

A1A1
Tu21 = λ2u21

A2A2
Tu22 = λ2u22

u11Tu21 + u12Tu22 = 0
||u11||2 + ||u12||2 = 1
||u21||2 + ||u22||2 = 1
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Fig. 6 Rule 4 (“pearls”): a “staircase” of three partially overlapping blocks. aAdjacencymatrix,b left-spectral
subspace, c right-spectral subspace

The answer to solving these functions is to let

u12 = u21 = 0,

which indicates that the first two left-singular vectors are

u1 =
⎡
⎣u11

0
0

⎤
⎦ ;u2 =

⎡
⎣ 0
u22
0

⎤
⎦

where ||u11||2 = 1 and ||u22||2 = 1.
It is easy to see, when we plot the u1 versus u2 subspace plot, we can spot the “rays”

aligned with the axes. The nodes in the 1st block have big values in u1 and zero in u2. The
nodes in the 2nd block have big values in u2 and zero in u1.

In summary, we find that non-overlapping lockstep behavior creates rays on the spectral-
subspace plots: as the density decreases, the rays elongate; as the followers add camouflage
or the followees add fame, the rays tilt.

3.4 “Pearl” for partially overlapping lockstep behavior

If a group of followers consistently follows their related group of followees, and partially
connect to other groups of followees, we say they have partially overlapping lockstep behav-
ior.

Herewe inject the randompower lawgraphwith three follower groups Fi , for i = 1, . . . , 3,
and five followee groups Ei , for i = 1, . . . , 5. Each follower group has 1,000 fans, and each
followee group has ten idols. Followers in F1 connect to followees in E1–E3; followers
in F2 connect to followees in E2–E4; and followers in F3 connect to followees in E3–E5;
Fig. 6a plots the adjacency matrix and Fig. 6b plots the left- and right-spectral subspaces.
We summarize a new rule.

– Rule 4 (“pearls”): Overlapping lockstep behavior creates “staircase” in the matrix, that
is,multiple dense blocks that are overlapping due to followers fromeach block connecting
to some followees in some other blocks. The spectral-subspace plots show “pearls” as a
set of points that form spherical-like high density regions within roughly a same radius
from the origin, reminiscent of pearls in a necklace.

In our case, Fig. 6b shows “pearls” of three clusters, each having 1,000 followers in groups
from F1 to F3. Figure 6c shows five clusters, each having ten followees in E1–E5. If the
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follower groups share some followees, or followee groups have the same followers, their
clusters are close on these plots.

Let’s continue denoting the matrices by what we did in the “ray” proof. Now suppose the
overlapping block is A12 ∈ R

n1×n2 , we have⎡
⎣A1A1

T A12A12
T

A2A2
T

A0A0
T

⎤
⎦

⎡
⎣u11
u12
u10

⎤
⎦ = λ1

⎡
⎣u11
u12
u10

⎤
⎦

⎡
⎣A1A1

T A12A12
T

A2A2
T

A0A0
T

⎤
⎦

⎡
⎣u21
u22
u20

⎤
⎦ = λ2

⎡
⎣u21
u22
u20

⎤
⎦

u11Tu21 + u12Tu22 + u10Tu20 = 0

trace(A1A1
T) > trace(A2A2

T) > trace(A12A12
T) � trace(A0A0

T)

||u11||2 + ||u12||2 + ||u10||2 = 1

||u21||2 + ||u22||2 + ||u20||2 = 1

We still assume that u10 = u20 = 0. Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1A1
Tu11 + A12A12

Tu12 = λ1u11
A2A2

Tu12 = λ1u12
A1A1

Tu21 + A12A12
Tu22 = λ2u21

A2A2
Tu22 = λ2u22

u11Tu21 + u12Tu22 = 0
||u11||2 + ||u12||2 = 1
||u21||2 + ||u22||2 = 1

The first two left-singular vectors are

u1 =
⎡
⎣u11
u12
0

⎤
⎦ ;u2 =

⎡
⎣u21
u22
0

⎤
⎦

where u12 and u22 are two orthogonal, eigenvectors of the matrix A2A2
T, and the vectors

u11 and u21 satisfy {
u11T

(
A1A1

T − λ1I
)
u22 = 0

u21T
(
A1A1

T − λ2I
)
u12 = 0

Thus, we have

(A1A1
T − λ1I)u11u21T(A1A1

T − λ2I) = 0

If we plot the dots of vector u1 and u2, the two clusters of dots including (1) vector u11 versus
u21 (2) vector u12 versus u22 are distributed in the subspace as “pearls”.

Both “Ray” and “Pearl” patterns reflect dense blocks in adjacency matrix that are caused
by lockstep behavioral phenomenon. However, they have intrinsic differences: “Ray” pattern
catches non-overlapping dense blocks (non-overlapping lockstep behaviors), while “Pearl”
pattern catches partially overlapping dense blocks (partially overlapping lockstep behaviors).
Note that the overlapping part is still very dense—as dense as the major part of the dense
block. It is different from “camouflage” and “fame” which are very sparse. Later in the
experimental section we show that the density of “camouflage” or “fame” is as small as 1
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or 0.1% of the density of blocks. Furthermore, “Pearl” means collaborations between fake
accounts and “Ray” means NO collaboration. This is another big difference showing that
separating the two concepts is necessary. They indicate two different behavioral patterns of
fake users and cover ALL the settings of lockstep behaviors.

With the insights into patterns on spectral-subspace plots (Rule 1–4), it is now easy for a
practitioner to predict connectivity patterns in the adjacency matrix and infer different types
of lockstep behavior.

4 Lockstep behavior inference algorithm

Our lockstep behavior inference algorithm LockInfer has two steps:

– Seed selection: Following Rule 1–4 in Sect. 3, select nodes as seeds of followers that
behave in lockstep, simply called “lockstep” followers.

– “Lockstep” propagation: Propagate “lockstep” score between followers and followees,
and thus catch the lockstep behaviors. We scoop all the followers in lockstep, exonerate
false alarms, and also spot followees in lockstep. We suggest to determine the threshold
density d̂ according to Sect. 3.1.

Next we describe each step in more detail. The overview of LockInfer is given below in
Algorithm 1.

Input: Adjacency matrix A, the minimum size of block mmin × nmin and threshold density d̂ .
Output: Lockstep Blocks Lock B.
Seeds = Select Seeds(A)

Lock B = {}
foreach source node set S0 in Seeds do

// Append a new, scooped Lockstep Block.
Lock B = Lock B ∪ Scoop(S0, mmin, nmin, d̂)

end
return Lock B

Algorithm 1: LockInfer: infer lockstep blocks in a large graph

4.1 Seed selection

The LockInfer algorithm can start with any kind of seeds, even randomly selected ones.
However, careful selection of seeds obviously accelerates the response time. We have a few
heuristics to find good seeds:

– Select fans whose out-degree is at the spikes. The drawback is that the majority are
actually innocent.

– Select fans with our insights in Sect. 3, and we demonstrate that it is more effective.

Of course, if we have side information, like IP address of the node, demographic info,
etc., we can use that to select seeds (e.g., a large group of followers, all born on the first day
of the same year, all males, all from the same city, would be suspicious). However, we show
that, even without side information, LockInfer carefully chooses the seeds and it is still
effective. Figure 7 shows how we conduct the seed selection. The “seed selection” algorithm
has three steps (see Function Select Seeds):
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Scatters in spectral subspaces show normal shapes on θ and r frequency

“Rays” show two apparent spikes on θ frequency at 0o and 90o

Tilting “rays” show two apparent spikes on θ frequency

“Pearls” show a spike on r frequency at a big positive value

(a) (b) (c) (d)

Fig. 7 Find (tilting) “rays” and “pearls”: a spectral-subspace plot, b hough transform (perpendicular distance
r vs. rotation angle θ ), c bin plot (histogram) of distance r frequency, d bin plot of angle θ frequency

First, generate a range of spectral-subspace plots. We compute the top k left-singular
vectors u1, . . . , uk , and plot all the follower points in the subspace formed by each pair of
the singular vectors, as shown in Fig. 7a. The common spectral-subspace plot has a cloud
of points around the origin like what is happening for high-dimensional cases (e.g., U19 vs.
U20). However, we spot strange shapes in some of the plots: “rays” with right angle (e.g., U1

vs. U3), tilting “rays” (e.g., U1 vs. U2) and “pearls” (e.g., U2 vs. U8).
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Input: The adjacency matrix A and the following values by default: the number of singular values k,
number of bins Kr and Kθ for radius and angle marginals.

Output: Initial source node sets Seeds.
Seeds = {}
Calculate A’s k-column singular vectors U and V .
foreach eigen pair (i , j ), 1 ≤ i < j ≤ k do

Step 1: Give spectral-subspace plot of Ui versus U j .
Step 2: Transfer into polar coordinates (radius r versus angle θ ):

for every user ux , x ≤ N , rx =
√

U2
i,x + U2

j,x and θx = arctan
U j,x
Ui,x

.

Step 3-1: Plot radius marginal (r versus frequency in histogram) and detect spikes with median filter:
the frequency of r is f req(r) = |{x |rx = r}| and the frequency of θ is f req(θ) = |{x |θx = θ}|.
Step 3-2: Plot angle marginal (θ versus frequency in histogram) and detect spikes: using Median
Filtering method, we can catch the red bars in Fig. 7d.
Step 3-3:Put the nodes at the spikes into Seeds.

end
return Seeds

Algorithm 2: Select Seeds(A)

Second, use the points as input to Hough transform and plot them in polar coordinates
(r, θ ), where r is the perpendicular distance and θ is the rotation angle. As shown in Fig. 7b,
for “rays”, it shows two straight lines at θ = 0◦ and θ = 90◦; for “pearls”, it shows a set of
micro-clusters at some big r values.

Third, we divide radius (r ) and angle (θ ) axes into bins and thus plot radius and angle
marginals: node frequencies of r and θ values. For “rays”, the angle marginal (θ -bin plot)
shows two clear spikes at 0◦ and 90◦, while it shows nothing for other cases; for “pearls”, the
radius marginal (r -bin plot) shows a single spike, while the frequency decreases smoothly
with the radius for other cases. With median filter [38], we detect the spikes and then put
nodes at the spikes into seed set.

Notice that if there is no lockstep behavior, no dense block in the adjacency matrix, the
spectral-subspace plots show a cloud of points around the origin, as shown in Fig. 3(a, b). The
node frequency of angle θ should be almost a constant, and the node frequency of distance
r should decrease smoothly with the value increasing.
Parameter setting for Lockstep Block: We set the minimum size of Lockstep Block as mmin×
nmin (mmin = 100, nmin = 10) and the minimum density d̂ according to Lemma 3.1 as
default parameters. Thus, the size of lockstep blocks should be at least 100 × 10: they have
at least 100 fake accounts and ten customers.

Here we list a few hints of the parameter setting:

– From distributions/statistics: Anomalies on degree distributions or statistical analysis
indicate the size of a minimum Lockstep Block. For example, we suggest practitioners
(e.g., employers in Twitter whose task is to detect frauds) to set nmin = 20 because of
the spike on the out-degree distribution at 20 [18].

– From applications: Human labors and experts have frequently worked on fraud detection
in a given dataset. They may suggest the parameters according to the smallest attack they
find in the network.

From later, the experimental results, we can see the dense blocks we find are much bigger
than 100 × 10. Our algorithm is insensitive to mmin and nmin.
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4.2 “Lockstep” propagation

We now interpret how we start with the seeds and refine a group of followers and followees
with lockstep behavior. The “lockstep” value of a followee is defined as the percentage of
the seeds or “lockstep” followers who are its followers. Similarly, the “lockstep” value of a
follower is defined as the percentage of the “lockstep” followees who are its followees. We
need a threshold to decide which users are new “lockstep” followers/followees.

The Scoop algorithm recursively propagates this value from followers to followees, and
vice versa, like what Belief Propagation method does. In more detail, we explain the steps
as follows.

Input: S0 is the seed. The Lockstep Block must be larger than m × n and at least d dense.
Output: Lockstep Block (S, T )
// Assert | S0 |≥ m.
T0 = {}; i = 0;
repeat

Ti = S2T (Si , d);
if | Ti |< n then

return ({},{})
end
Si+1 = T 2S(Ti , d);
if | Si+1 |< m then

return ({},{})
end
i = i + 1;

until Si == Si−1;
return (Si , Ti−1)

Algorithm 3: Scoop(S0, m, n, d)

Input: Source node set S and density d.
Output: Target node set T that has more than d of S.
// Assume adjacency matrix A is given.
return T = { j : ∑

i∈S
Ai, j > d | S |}

Algorithm 4: S2T (S, d)

Input: Target node set T and density d.
Output: Source node set S that follows more than d of T .
// Assume adjacency matrix A is given.
return S = {i : ∑

j∈T
Ai, j > d | T |}

Algorithm 5: T 2S(T, d)

– From follower to followee: Figure 8a shows an example of a directed graphwith followers
at the top and followees at the bottom. We start with five “lockstep” followers as seeds
for propagation. For each followee, we count how many its followers are in the seed set.
We select the group of “lockstep” followees who have too many “lockstep” followers.
Function S2T shows how we propagate “lockstep” score from source nodes to target
nodes.
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Fig. 8 Iteratively propagate “lockstep” score between source nodes and target nodes: find lockstep behavior of
users by propagating “lockstep” value: select followers (followees) who have too many “lockstep” followees
(followers). a S2T : select “lockstep” followees: from (seed) followers to followees. b T 2S: select “lockstep”
followers: from followees to followers

– From followee to follower: Next for each follower, we count how many its followees are
“lockstep”. Figure 8b shows howwe select new “lockstep” followers and exonerate those
innocent with zero or one “lockstep” followee. Function T 2S shows how we propagate
“lockstep” score from target nodes to source nodes.

– Repeat until convergence: Report the groups of “lockstep” followers and followees if
they are not empty.

The derivation of d̂ (Lemma 3.1) provides the lower limit of density d , and in “lockstep”
propagation, we use d̂ to select lockstep followers/followees (i.e., find lockstep blocks).
Therefore, the lockstep blocks that LockInfer detects are too dense to appear, because the
expected count of such big, dense blocks is smaller than 1. Overall, the derivation ensures
the effectiveness of LockInfer.

4.3 Scalability

LockInfer has two computational stages: (1) handling singular value decomposition on
large-scale sparse matrix; (2) read the pair-wise plots, collect “lockstep” seeds and propagate
“lockstep” scores on the graph. For the first,HEigen [39], an accurate and efficient algorithm
that implemented k-SVD on the highly scalable MapReduce environment, has proved that
the time complexity is O(k(N + E)) where N is the number of nodes and E is the number
of edges. For the second stage, the time complexity is O(k2N + k N + T E) where T is the
number of iterations. As k = 20 and T is much smaller than N , and N is smaller than E ,
we know that the total time complexity of LockInfer is O(E), i.e., linear in the number of
edges.

5 Experimental results

In this section we present our empirical evaluation, first on a large, real-world graph, and
then on synthetic graphs where the ground truth is known.

5.1 On “who-follows-whom” Weibo social graph

We operate our algorithm on the 100-million-node social graph Weibo. In applications it is
quite unusual for the full SVD, including a full unitary decomposition, so, we tackled this
problem with Truncated SVD, which can be much quicker and more economical than the
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Table 4 Statistics of connectivity patterns formed by groups of users with lockstep behavior: the density
of the “block” and blocks in “staircase” is >80%, while the Weibo followers have little “camouflage” and
followees have little “fame”

“ray” F0 “pearl” F1 “pearl” F2 “pearl” F3 “pearl” Total

Num. seeds 100 1,239 107 990 —

Size of block 83,208 × 30 3,188 × 135 7,210 × 79 2,457 × 148 10,052 × 270

Density 81.3% 91.3% 92.6% 89.1% 43.1%

Camouflage 0.14% 0.06% 0.10% 0.05% 0.07%

Fame 0.05% 1.93% 1.94% 1.72% 1.73%

Out-degree 231 ± 109 310 ± 7 312 ± 7 304 ± 5 310 ± 7

In-degree 2.0 ± 1.4 9 ± 6 10 ± 6 17 ± 13 12 ± 9

Fig. 9 Blocks that LockInfer discovers: a 83K fans follows the same 30 idols in lockstep, forming a single
Suspicious Block in adjacencymatrix, b 10K fans follows 270 idols, forming a “staircase” of three overlapping
blocks

compact SVD. In our WEIBO case with millions of nodes, we set the rank k = 20. The
reason is, in Fig. 7a, U19 versus U20, we observe scatters (like a cloud of points) around the
original point, indicating that the subspace in such high dimensions is random distributed.
We suggest the practitioners to choose k according to the subspace plots. Since k � N (N is
the number of nodes), the algorithm is much faster than full SVD. Table 4 report the statistics
of strange connectivity patterns that we find on the network.

– “Blocks” and “staircase”: With the proposed rules and algorithm, we catch a dense
block with the “ray” pattern and a staircase of three overlapping blocks with the “pearl”
pattern on spectral-subspace plots. Figure 9 have show the adjacency matrix and their
sets of followers F0 and F1–F3.
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Table 5 Strange profiles we find:
additional account information,
of some suspicious followers,
detected with LockInfer; logins,
(self-declared) birthdays, and
in-degrees, are all strange such as
“a#####”-like nickname,
January-1st birth date, and small
in-degree

Login-name Date of birth In-degree Out-degree

a15681 1986:01:01 1 301

a21154 1975:06:04 2 301

a27217 1982:01:01 3 304

a27290 1980:01:01 5 107

a38887 1982:01:01 3 310

catty 1972:01:01 2 316

Fig. 10 Restored typical pattern of out-degree distribution: the log–log distribution has spikes and becomes
smoother after we remove followers with “lockstep behavior”. The followers have similar out-degree values,
i.e., similar numbers of followees from the same group. a two spikes on distribution, b smoother after our
operation

– High density, small “camouflage” and small “fame”: The density of every block is
greater than 80%, while the density of the “staircase” is only 43%. It proves that the
staircase consists of partially overlapping blocks. The camouflage, that is the connectivity
between “lockstep” followers and other followees, is as small as 0.2% dense. The fame
is smaller than 2%.

The above numbers validate the existence of non-overlapping and partially overlapping
lockstep behavior and also the effectiveness of our method. Further, we give additional
evidence of the similar personalities of the “lockstep” followers.

– Strange profiles: The login-names of 10,787 accounts from the “lockstep” users are like
“a#####” (# is a digital number, for example, “a27217”). Their self-declared dates of
birth are in lockstep the January 1st. They were probably created by a script, as opposed
to natural users. The details of some examples are listed in Table 5.

– Small in-degree values of followers: The average in-degree value of followers in the
single “block” is as small as 2.0, while that of followers in the “staircase” is smaller
than 20. The “lockstep” followers actively connect to their followees, but they have little
reputation themselves.

– Similar out-degree values of followers: The out-degree values of “lockstep” followers in
the “staircase” are similarly around 300. In Fig. 10, we plot the out-degree distribution of
the graph in log–log scale and spot two spikes, which means abnormally high frequency
of nodes who have around 300 followees. After we remove the “lockstep” followers, we
find out that the spikes disappear and the distribution becomes smoother.
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Table 6 Strange deviations of out-degree distribution: the distribution has two spikes at out-degree values
301 and 316

Out-degree #User Out-degree #User Out-degree #User Deviation

270 3,436 280 3,048 290 2,773

300 3944 301 4043 302 3418 Spike

311 2852 312 2679 323 2836

315 4373 316 4918 317 4414 Spike

320 2821 330 1976 340 1650

We aim at spotting the deviations, explaining them with connectivity patterns, and restored the normal distri-
bution

For the last point, we want to say, most graphs exhibit smooth degree distributions, often
obeying a heavy-tailed distribution (power law [40,41], lognormal, etc). Deviations from
smoothness are strange: Border et al. [40] said that in the case of the web graph, the spikes
were due to link farms. Thus, if the removal of some “lockstep” users makes the degree plots
smoother, then we have one more reason to believe that indeed those users were strange.

We report surprising deviations from typical patterns like power-law-like degree distrib-
utions in Table 6 and Fig. 10a. The out-degree distribution in log–log scale has two spikes
at out-degree 301 and 316. One direct explanation is the strange behaviors of nodes (follow-
ers) that connect to the same number of other nodes (followees). Figure 10b shows that the
out-degree distribution is restored to the power-law-like, typical pattern, after we remove the
connections from the follower groups who offer lockstep behaviors. The lockstep followers
are exactly the nodes who create the two spikes. They have similar out-degree values, or in
other words, they connect to the similar groups of followees.

Insensitivity to parameters: We set k = 20 for the trade-off between the number of spectral-
subspace plots and the time cost of SVD. When reading the polar coordinates and creating
the radius/angle marginals, we divide the radius axis into Kr = 20 bins as default, and angle
axis into Kθ = 2Kr = 40 bins because θ can be either positive or negative.

In fact, our LockInfer algorithm is insensitive to the parameters k, Kr and Kθ . All the
parameters help find red parts in Fig. 7c, d, indicating spikes on the binplots of radius/angle
marginals.Weoperate on this TencentWeibo real data and change the values of the parameters
to check the robustness.

– For parameter k, Fig. 11 shows that even though when k is as small as 6, LockInfer
catches all the “Ray” and “Pearl” patterns. Our algorithm can automatically tell if there
is some anomalous pattern in a spectral-subspace plot, with which we set the value of k.
A bigger k will better ensure the robustness in practice.

– For Kr and Kθ , Fig. 12 shows that when we change the values of Kr and Kθ , the spikes
are easy to be caught: When Kr ∈ {10, 20, 40} and Kθ ∈ {20, 40, 80}, our algorithm can
find the same red parts on the binplots.

Scalability: Figure 13 plots thewall-clock time, including the time cost of the first stage (SVD
computation), the second stage (LockInfer), and the total procedure, versus the size of the
graph (number of edges in billion-level), while we randomly sample the edges of Tencent
Weibo social graphwith a setting of the number of edges: 1, 2, and 3 billion.LockInfer costs
134.73 minutes (2h 15min) to process the Weibo data. The time complexity of our algorithm
is linear to the scale of the social graph and thus scalable to be applied in real applications.
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Fig. 11 LockInfer is insensitive to parameter k. In fact, we can choose k = 6 to catch all the “Ray” and
“Pearl” patterns. Our setting k = 20 is sufficient

Kr 20 4010

Kθ40 20 80 

Fig. 12 LockInfer is insensitive to parameter Kr and Kθ . Our algorithm can consistently detect the spikes,
varying the values of these parameters

5.2 On “actor-movie” IMDb dataset

We conduct experiment on IMDb dataset, i.e., a large bipartite graph between actors and
movies/television series. In Fig. 14, we spot “rays” on spectral-subspace plots of both U1

versusU2 andU3 versusU4. Table 7 shows surprising connectivity patterns on IMDb. Starting
from the seeds from“rays”,we scoop for dense blocks.The informationof themare as follows.
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Fig. 13 Our LockInfer is scalable: the time complexity is linear in the number of edges

Fig. 14 “Rays” on spectral subspaces of IMDb: we spot tilting “rays”, which showmain connectivity patterns
between actors and movies

– Block I consists of American late-night talk shows. The actors are musicians, singers and
artists who are guests on the shows.

– Block II has many famous film actors who were born before 1900. Their television
anthology/drama series were produced in around 1950s.

– Block III has British actors/actresses and their performances/shows on BBC.
– Block IV has recurring roles or guest stars who were invited to play in American

police/crime series, like CSI, NYPD Blue and Cold Case.
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Table 7 Lockstep Blocks on
IMDb: we operate LockInfer on
the dataset and find dense blocks
with the four “rays”

“Ray” I “Ray” II “Ray” III “Ray” IV

Seed 74 57 30 103

Block 414 × 30 178 × 44 139 × 15 373 × 12

Density 61.4% 58.2% 66.7% 57.4%

Camouflage 0.65% 1.74% 1.87% 0.69%

Fame 6.06% 6.59% 12.0% 12.8%

From Table 7, we observe that

– Lockstep blocks of large scale: From the top four blocks’ statistics we can see that the
number of actors/actresses/directors ranges from 100 to 500, while the number of movies
ranges from 10 to 50. So, the actor communities often have population as large as 500
but not in thousands.

– Big density: The density values range from 50 to 70%, indicating that more than half of
the actors in the community join all the movies, and more than half of the movies are
made by almost all the actors in the community.

– Small “camouflage”: The camouflage values are often very small, because actors in those
communities are ordinary. The real, famous movie stars do not make only one style of
movies but many different kinds of films.

– Big “fame”: The actors join some other movies outside the block to make more money,
which can explain the ∼10% “fame” values.

5.3 On US patent citation network

In this section, we test the effectiveness of our LockInfer algorithm on public US patent
data in [42]. The dataset has 3,774,768 vertices (patents) and 16,518,947 edges (citations).
Trappey et al. [43] have carefully extracted key phrases and using fancy document clustering
methods to assign the patents into 10 clusters. We use their results as the ground truth and run
our algorithm on the public dataset. We evaluate the performance by popular metrics such
as precision and recall. Table 8 shows the performance of our LockInfer algorithm (when
k = 20), comparing with the state-of-the-art algorithm Autopart [22], Outrank [19] and
Oddball [23].

We can observe that our LockInfer algorithm consistently outperforms the previous
methods. The traditional works can infer strange substructure in large graphs including dense
cliques, bipartite cores and stars. Comparing the experimental results, we can see that

– Autopart can automatically partition the graphs and catch the outliers. The patents in
cluster 4 are in an isolated component of the graph, so, Autopart can give very high
precision. However, its recall value is not good, because it catches the outliers but not
the major part of this component.

– Outrank can propagate value of the vertices through the network. We initial the algo-
rithmwith PageRank value and for cluster 8, it reaches the best performance, because the
patents in cluster 8 form a very dense clique. Our LockInfer can have comparatively
high precision (0.82) and recall (0.74).

– Oddball extracts the features to assign the vertices (patents) into clusters. However,
the in-degree, out-degree and some other features cannot reflect how strongly connected
(cited with each other) the citations are.
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Table 8 Compare performances of our LockInfer and the state-of-the-art methods on US patent data: for
most of the document clusters, LockInfer consistently outperforms the previous algorithms

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

LockInfer Precision 0.86 0.83 0.92 0.89 0.99

Recall 0.82 0.76 0.82 0.75 0.70

Autopart Precision 0.66 0.67 0.52 0.91 0.94

Recall 0.52 0.46 0.46 0.21 0.49

Outrank Precision 0.52 0.23 0.43 0.59 0.69

Recall 0.42 0.56 0.32 0.69 0.70

Oddball Precision 0.26 0.43 0.32 0.49 0.29

Recall 0.32 0.26 0.65 0.29 0.64

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

LockInfer Precision 0.93 0.86 0.82 0.99 0.77

Recall 0.28 0.76 0.74 0.72 0.85

Autopart Precision 0.56 0.33 0.29 0.76 0.61

Recall 0.89 0.31 0.18 0.43 0.61

Outrank Precision 0.36 0.63 0.72 0.79 0.59

Recall 0.82 0.36 0.85 0.69 0.40

Oddball Precision 0.22 0.63 0.44 0.56 0.70

Recall 0.21 0.56 0.34 0.43 0.65

– Our LockInfer algorithm often has very high (0.8 ∼ 1.0) precision and recall values.
We demonstrate that only using the citation structure, we can reach almost the same
performance as careful document clustering methods with key phrases.

5.4 On synthetic data

Here we want to validate the effectiveness of Rule 3 (tilting “rays”) and 4 (“pearls”). We
inject a group of followers and followees operating in lockstep on a 1-million-node random
power law graph. The goal is to predict who are the injected nodes. We adopt Accuracy to
qualify the performance, which is the ratio of correct predictions.

First, we add camouflage to the followers, i.e., we increase the density of connections
between the followers and other followees on the graph from 0 to 0.01. We compare the
performance of different versions of our algorithm: one considers Rule 3 when it selects
seeds from spectral-subspace plots, and the other does not. Rule 3 says when the followers
have camouflage, the rays tilt. Figure 15a shows that both accuracy values decrease with the
camouflage increasing, and the algorithm that considers Rule 3 performs much better.

Second, we inject partially overlapping lockstep behavior. In other words, we put a “stair-
case” in the adjacencymatrix.Wechange the size of the staircase, i.e., the number of followers.
One of the algorithms compared here considers Rule 4 and the other does not. Rule 4 says
when there is a staircase, some spectral-subspace plots have “pearls”. Figure 15b shows that
our algorithm that fully considers all the rules is sensitive to the number of “lockstep” fol-
lowers. When it is bigger than 7, which is big enough for the behaviors to show footprints in
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Fig. 15 Effectiveness of Rule 3–4: if the accuracy is higher, the performance is better. a Rule 3 (tilting “rays”)
helps when lockstepers have “camouflage”. b Rule 4 (“pearls”) helps. when lockstepers form “staircase”

Table 9 Our LockInfer wins when there is “camouflage” in the synthetic data: the “camouflage” cannot
evade our LockInfer detection with Rule 3 (“tilting rays”)

Camouflage 0.005 0.010
Precision Recall Precision Recall

LockInfer with Rule 3 0.80 0.78 0.64 0.47

LockInfer without Rule 3 0.34 0.32 0.10 0.08

Autopart 0.45 0.33 0.21 0.20

Outrank 0.20 0.25 0.01 0.02

Oddball 0.02 0.02 0.03 0.04

the spectral subspaces, we can catch over 95% of the followers, while the version that does
not consider Rule 4 fails to predict them.

Can the state-of-the-art methods catch the blocks with camouflage? We perform the
Autopart, Outrank and Oddball on the synthetic dataset. The precision and recall of
the three previous methods and our two versions of LockInfer (with and without Rule 3)
have been listed in Table 9.

We can observe that when the block has camouflage, only our method that uses Rule 3 can
catch it. All the previous methods we have tested and the version of LockInfer that does
not use Rule 3 fail|small precision and recall.

Does LockInfer outperform the other methods on the “staircase”? We run similar exper-
iments on the synthetic data with a dense “staircase”. Table 10 shows the performances of
our methods and the other baseline algorithms.

We can see that LockInfer significantly outperforms the existing methods, especially
LockInfer without the Rule 4. Our LockInfer has almost perfect detection performance
(99–100%).

6 Conclusion

In this paper, we proposed a novel method to infer lockstep behaviors from connectivity
patterns on large graphs like “who-follows-whom” social graph.We offer new understanding
into the plots of spectral subspaces. “Ray” and “pearl” patterns are created bydifferent types of
lockstep behaviors (non-overlapping and partially overlapping patterns). Using the insights,
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Table 10 Our LockInfer wins when there is “staircase” in the synthetic data: the “staircase” cannot evade
our LockInfer detection with Rule 4 (“pearls”)

Staircase size (#user) 50 100
Precision Recall Precision Recall

LockInfer with Rule 4 0.99 1.00 1.00 1.00

LockInfer without Rule 4 0.00 0.00 0.02 0.03

Autopart 0.15 0.16 0.14 0.20

Outrank 0.24 0.19 0.32 0.32

Oddball 0.07 0.05 0.22 0.14

we derive a fast algorithm to detect such behavior patterns. We demonstrate the effectiveness
of our method on both real graphs and synthetic data with injected lockstep behaviors.
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