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Abstract

With modern LiDAR technology the amount of topographic data, in the form of massive

point clouds, has increased dramatically. One of the most fundamental GIS tasks is to con-

struct a grid digital elevation model (DEM) from these point clouds. We present a simple

yet very fast natural neighbor interpolation algorithm for constructing a grid DEM from

massive point clouds. We use the graphics processing unit (GPU) to significantly speed up

the computation. To handle the large data sets and to deal with graphics hardware limita-

tions clever blocking schemes are used to partition the point cloud. This algorithm is about

an order of magnitude faster than the much simpler linear interpolation, which produces

a much less smooth surface. We also show how to extend our algorithm to higher dimen-

sions, which is useful for constructing 3D grids, such as from spatial-temporal topographic

data. We describe different algorithms to attain speed and memory trade-offs.
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1

Introduction

The revolution in sensing and mapping technologies is providing an unprecedented op-

portunity to characterize and understand the earth’s surface and dynamics. For instance,

modern airborne LiDAR technology can map the earth’s surface at a 15-20cm horizontal

resolution, and the future generation of LiDAR scanners are expected to generate high-

resolution maps of other planets; see Figure 1.1(a). It is essential for many applications

to exploit the high-resolution data sets that are available. An example of this can be seen

in a simple flood mapping application. Figure 1.1(b,c) shows the result of the flood risk

mapping for the island of Mandø in the Wadden-Sea off the west-coast of Denmark. The

island has an approximately five meter tall perimeter dike which protects it from the sea.

Because of the small width of the perimeter dike, this feature is not present in low- or

mid-resolution grids. Thus, when flood maps are constructed for a water level of 2 me-

ters, it looks as if most of the island will be underwater; see Figure 1.1(b) for an example

using a 90m grid (the SRTM grid available from NASA [13]). The same computation per-

formed on a 2m-resolution grid, shown in Figure 1.1(c), correctly finds that the dikes, now

present in the terrain model, block the water from entering the lower-lying areas inside the

perimeter.
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(a) 0.5m grid (b) 90m grid (c) 2m grid

FIGURE 1.1: (a) Grid DEM constructed from LiDAR data over a region in Afghanistan
(data source: Army Research Office), trees are clearly visible. (b) A flood risk mapping
of the island of Mandø in Denmark, using the 90m, and (c) the same using 2m grid; both
figures are screenshots of a custom map application built on Google Maps.

Capitalizing on opportunities made feasible by high resolution data sets and transform-

ing this massive amount of topographic data into useful information for vastly different

types of users requires solving several challenging algorithmic problems. For example,

in order to fully explore topographic data, one must often first extract a terrain from the

scattered set of points generated by the LiDAR equipment. Most GIS applications do not

work directly on the point cloud S gathered by a LiDAR scanner, but instead operate on a

digital elevation model (DEM) of the terrain surface. Thus one of the most important of

these problems is to generate a DEM from S.

Because of its simplicity and efficiency, the most widely used DEM is a uniform two-

dimensional grid in which an elevation value is stored at each cell. However, point clouds

are not acquired on a uniform grid but can be seen as a set S of n (arbitrary) points in R2

with an associated elevation function h : S Ñ R. Thus, to construct a grid DEM, h has to

be extended via interpolation to a uniform grid G � R2 at the desired resolution.

Additionally, as acquiring high resolution data sets becomes easier, it has also become

more reasonable to have multiple scans of the same region over multiple years. In dynamic

terrains, such as coastal regions, spatial-temporal data can offer interesting insight into
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how the terrain changes over time. To analyze the surface we still would like create grid

DEMs based on the point cloud, but we now have a higher dimensional point cloud, set

of points S in R3, and would like to produce DEMs for many slices in time, or more

generally, interpolate to a higher dimensional grid. This provides additional algorithmic

challenges.

1.1 Related Work and Contributions

Numerous interpolation methods, ranging from sophisticated but computationally expen-

sive methods to simpler and efficient methods, for grid DEMs have been developed;

see [20] for a review. Regularized splines with tension (RST) is a well-known method,

which is sophisticated but computationally expensive due to its use of non-trivial polyno-

mials [1, 21]. RST and similar highly sophisticated interpolation methods are especially

good when the input data is sparse and lots of interpolation has to be performed. On the

other hand, constructing a triangulation on input points and linearly interpolating the ele-

vation of grid points across the triangles is one of the simplest interpolation methods. It,

however, does not produce a smooth surface, especially when the data is relatively sparse.

The resulting grid DEM can appear jagged both when viewed directly and also in derived

products, such as contour maps.

In this thesis we use the well-known natural neighbor interpolation strategy [26].

Based on the Voronoi diagram of S, it produces a smoother surface than linear interpola-

tion. Although NNI is more efficient than RST and other similar interpolation methods,

its traditional implementations are slower than linear interpolation and are therefore not

widely used for very large data sets.

Over the last decade modern PCs have started to become equipped with advanced and

increasingly powerful graphics processing units (GPUs). Although originally designed

for rapidly transforming 3D geometric scenes into pixels on the image plane (screen) and
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extensively used in video games, they can be regarded as massively parallel vector proces-

sors suitable for general purpose computing. Known as general purpose GPUs (GPGPUs),

their tremendous computational power and memory bandwidth make them attractive for

applications far beyond the original goal of rendering complex 3D scenes, and they have

been used for a wide range of applications, e.g., geometric computing [3], robotic colli-

sion detection [14], database systems [15], fluid dynamics [19], and solving sparse linear

systems [9, 8]. As GPUs have become more flexible and programmable (e.g. NVIDIA’s

CUDA [23] library), their applicability has also increased tremendously; see [24] for a

recent survey. In the context of grid DEM construction, Fan et al. [12] have described

a GPU based algorithm for natural neighbor interpolation (NNI), which is considerably

faster than a CPU based algorithm.

Results. In this thesis we present a simple yet very fast GPU based algorithm for con-

structing a grid DEM from large LiDAR point clouds using a variant of the natural neigh-

bor interpolation method. LiDAR scanners provide dense (high resolution) point cloud

of elevation data at most locations, but there are gaps, usually at large bodies of water or

human-made objects that have been removed from the point cloud in a preprocessing step.

In such cases we wish to label the corresponding “gap” cells in the grid DEM with “no-

data” instead of interpolating elevation based on points that are far away. We introduce the

notion of region of influence for each input point, similar to the one used in α-shapes [11].

For a grid point, we use only those points to compute its elevation whose regions of in-

fluence contain the query point. See Section 2.2 for details. Although our algorithm is

similar to that of Fan et al. [12], there are three main differences:

(i) Our algorithms handles gaps differently, as described above.

(ii) Exploiting the fact that we are interpolating elevations at grid points, it uses a clever

“blocking” scheme to expedite the computation considerably. In contrast to the

algorithm in [12], which performs NNI interpolation at¤ 32 points (or¤ 128 points
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depending on hardware properties of the GPU card) in one step, it can answer more

than 106 NNI queries at grid points in one step.

(iii) It exploits CUDA to substantially improve its efficiency by performing the majority

of the computation on the GPU, thereby minimizing the communication between

main and GPU memory.

These techniques lead to an extremely fast algorithm for computing a grid DEM. For

example, our algorithm computes a grid DEM covering a 600km2 region at 2m resolution

(i.e., � 150 million grid points) from two billion input points in less than thirty-seven

minutes on a 3GHz Intel Core 2 Duo processer with a NVIDIA GeForce GTX 470 graphics

card. Our CPU based linear-interpolation algorithm takes more than five and a half hours

on the same PC. Not only is this a significant speedup, NNI interpolation also produces

a smoother grid DEM than the linear-interpolation method. The more sophisticated RST-

based algorithm takes about thirty-four hours on the same data set, even after throwing

away a fraction of the points for efficiency, and the output between NNI and RST-based

interpolations is nearly indistinguishable. Another advantage of our algorithm over linear

or RST interpolation is that it can be trivially parallelized, so it could be implemented

easily on a GPU cluster.

In extending the algorithm to handle higher dimensional grids, we exploit redundancy

in interpolating on adjacent grids and discuss memory and time trade-offs in handling this

redundancy. We find that at the expense of GPU memory we can reduce the time spent on

interpolation to a third of the time, and without any loss of interpolation quality.

The thesis is organized as follows. Section 1.2 provides a brief overview of the GPU

model of computation, which will be used and referenced through the rest of the thesis. In

Chapter 2 we discuss the algorithm for constructing 2D grids. This chapter is based on an

extended version of our 2010 ACM GIS paper [6]. Section 2.1 describes a GPU based al-

gorithm for computing the Voronoi diagram of a set of points, and Section 2.2 describes a
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slight variant of the Fan et al. [12] algorithm for computing natural neighbor interpolation.

Section 2.3 describes the new algorithm for computing NNI interpolation on a grid, and

Section 2.4 contains implementation details and information about the speed and quality

experiments we have performed. In Chapter 3 we dicuss extending the algorithm to con-

structing 3D grids. In Sections 3.2 and 3.3 we discuss computing the Voroonoi diagram

and performing natural neighbor interpolation on the GPU in 3D. In Section 3.4 we dis-

cuss different algorithms for interpolating on 3D grids and in Section 3.5 we compare the

results from these different algorithms.

1.2 GPU Model of Computation

Primarily designed to achieve high performance for interactive graphics applications, mod-

ern programmable GPUs consist of a large number of processors (e.g., up to 480 for

the newest NVIDIA GeForce 4-series) with a high memory bandwidth (177.4 GB/sec

for NVIDIA’s GeForce GTX 480) and achieve higher floating-point throughput than the

CPUs. This high throughput has led to a tremendous effort for developing GPU based nu-

merical algorithms; see the recent survey by Owens et al. [24] and the references therein.

The graphics computation in all GPUs follows a similar pipeline, called the graphics

pipeline, which draws a three dimensional scene, composed of many objects, onto a two

dimensional image plane Π of pixels as seen from a specified viewpoint o. Because of

their simplicity and flexibility, these objects are almost always triangles. For each pixel

π � px, yqwhere x, y is a global coordinate, the GPU finds all objects Ω � tω1, ω2, . . . ωnu
which ray ~oπ intersects. To maintain high throughput, each stage of the computation is

implemented in hardware and computation on different parts of Π is performed in parallel.

See e.g. [18, 22] for details of NVIDIA’s GeForce 6 series. Here we note that, a GPU

contains several two dimensional arrays of pixels called buffers (or texture memory). We

mention the two most basic ones, which we will use:
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• The depth buffer D stores the distance to the nearest object from o for each pixel π.

Given that pj is the point of intersection for ray ~oπ and object ωj , the GPU calculates

Drπs � min
1¤j¤n

}opj}.

The modern GPUs provide the flexibility of performing various semigroup opera-

tions on opj’s instead of simply computing the minimum and also of performing

them in a conditional manner. For example, D can be in the read-only mode.

• The color buffer C stores the color of the scene as viewed from o. If for each object

ωj P Ω we have a color χj , we define a blending function that computes the color at

each pixel:

Crπs �
¸

1¤j¤n

αjχj,

where αj P r0, 1s is the blending parameter of ωj . Typically, αj is based on depth

buffer so that C stores the color of the foremost object. Again, the modern GPUs

provide several other binary operations on the colors. We will like our blending

function to compute the bitwise-OR of the colors. This can be done by setting

αj � 1 for 1 ¤ j ¤ n, as long as χj are bitwise-disjoint.

During graphical computations, the color and depth buffers reside in memory on the

graphics card. Objects can be drawn onto these buffers with specific APIs such as OpenGL[25]

or Microsoft DirectX [7]. However, in some cases we will want to use the values in these

buffers for computation on the CPU. For this, we have to read the buffer back to the com-

puter’s main memory. Unfortunately, since this involves transferring large amounts of data

over the relatively slow bus systems, read backs are very slow.

For using the GPUs parallel processing capabilities, the popular graphics card manu-

facturer NVIDIA has created the CUDA parallel computing architecture. CUDA makes it

easy to divide a task into many threads, where threads can work in parallel but also when
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necessary share memory and work together on procedures that aren’t trivially paralleliz-

able. Additionally advantageous is that CUDA operations are performed directly on the

graphics card and can efficiently access buffers, which reside in nearby GPU memory. As

an example, CUDA can split into one thread for each pixel of a buffer and read from each

pixel simultaneously without reading the buffer back to main memory. Inversely, mod-

ern GPUs allow multiple threads to write to the same memory with atomic functions that

provide thread synchronization and serialization.

8



2

Grid DEM Construction using a GPU

2.1 Pixelized Voronoi Diagram

Let S � tp1, . . . pnu be a set of n points in R2. For each point p P S, its Voronoi cell,

denoted by VorSppq, is defined as

VorSppq � tx P R2 | }xp} ¤ }xq}@q P Su ,

where } � } is the Euclidean distance, i.e., a point x P VorSppq if p is the point in S closest

to x. The Voronoi diagram of S, VorpSq, is the planar subdivision induced by the Voronoi

cells of points in S. See Figure 2.1 (a).

Hoff et al.[17] have described a GPU based algorithm for computing the Voronoi di-

agram of a set of points. Since we use a slightly different algorithm, we describe the al-

gorithm for the sake of clarity and completeness. An image plane Π consisting of N �N

pixels can be regarded as the square r0, N�1s�r0, N�1s in R2. Any square R � R2 can

be mapped to Π using an affine transformation. Given the set S and a square R, we are

interested in computing a pixelized (discretized) Voronoi diagram of S within R, which

we define below. We assume that R is mapped to the image plane Π. Each pixel of Π

corresponds to a (tiny) square of area ρ2 � AreapRq{N2. We refer to ρ as the resolution
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(a) (b) (c)

FIGURE 2.1: (a) Voronoi diagram VorpSq of a set S of points. (b) Pixelized Voronoi
diagram PVorpSq. (c) Truncated pixelized Voronoi diagram TPVorpSq of S with r � 5,
k was set high enough for the k-gons to be indistinguishable from cones.

of Π. For a pixel π P Π, let ϕpπ, Sq be the point in S whose Voronoi cell contains π. Since

π is a (tiny) square region, it may intersect multiple Voronoi cells, in which case ϕpπ, Sq
is assigned to one of the points using standard methods. For a point p P S, we define the

pixelized Voronoi cell of p to be

PVorSppq � tπ | ϕpπ, Sq � pu,

i.e., the set of pixels that lie in VorSppq; see Figure 2.1 (b). The quantity ρ2|PVorSppq|
approximates the area of VorSppq within R. The approximation error depends on ρ. For a

fixed R, the error decreases as we increase N , namely,

lim
NÑ8

ρ2|PVorSppq| � AreapVorSppqq.

For our purpose, we assume that PVorpsq is stored as follows. If ϕpπ, Sq � pi, then

the color buffer Crπs � i, i.e., we view each cell of the color buffer as a single word

(concatenation of R, G, B, A components) that stores the index of the point; Drπs stores

the value of }πϕpπ, Sq}, the distance from the center of π to its nearest neighbor in S.

The problem of computing PVorpSq can be formulated as that of rendering a 3D scene.

For a point pi P S, let fi : R2 Ñ R be defined as fipxq � }xpi}. The lower envelope f of
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FIGURE 2.2: Voronoi diagram as the lower envelope of a set of cones. The outer cells of
a Voronoi diagram are infinite, but in this figure their sizes are limited because the cones
are truncated.

tf1, . . . , fnu is defined to be

fpxq � min
1¤i¤n

fipxq ,

which is the distance from x to its nearest neighbor. VorpSq is the projection of the graph

of f on the xy-plane. Let C be the circular cone C : z �
a
x2 � y2 in R3. Then the

graph of each fi is a circular cone Ci � C � pi, with pi as its apex. See Figure 2.2. Let

C � tC1, . . . , Cnu. A point x P VorSppiq if fpxq is realized by the function fi at x, i.e.,

the line oriented in the �z direction hits Ci first. In other words, ϕpπ, Sq � pi if Ci is the

cone seen at pixel π when the set C is viewed from z � �8. If we set the color of Ci to

i, then the color and depth buffers store the desired information.

It is not easy to render a circular cone using a GPU, so we approximate a circular disk

by a regular k-gon and approximate the circular cone by using this k-gon as its base (see

Figure 2.3). The resulting polygonal cone C♦ is composed of k triangles. We replace

Ci by C♦
i � C♦ � pi. The error in tessellation induced by this approximation can be

controlled by choosing the value of k appropriately.

Finally, we note that we want to limit the region of influence for the points. We do this

by using a truncated Voronoi diagram. We define the radius of influence r of each point in
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S and the notion of a truncated pixelized Voronoi cell:

TPVorSppq � tπ | ϕpπq � p^ }pπ}   ru .

See Figure 2.1 (c). Thus, a pixel π that is farther than r away from all points of S does

not belong to the Voronoi cell of any point. Let Dr denote the disk of radius r centered

at origin. We can assume that S � R � Dr, as no point outside this region will contain

any pixel of Π in its Voronoi cell. This truncation is realized by limiting the height of the

cones C♦
i ; with a slight abuse of notation we use C♦

i to denote the truncated cone as well.

For each pi P S, we set the color of each triangle of C♦
i to i and pass them to the graphics

pipeline with z � �8 as the viewpoint. C and D together contain TPVorpSq. We refer

to this algorithm as GPUVORONOI (S). As mentioned above, there might be pixels that

are not touched by GPUVORONOI (S). We assume that C is initialized with a value that

allows us to distinguish these pixels from the pixels that are part of the truncated diagram,

e.g., we set their color to 0.

2.2 Natural Neighbor Interpolation

In this section we first formally define natural neighbor interpolation (NNI), then describe

a GPU algorithm for answering NNI queries, which is a small variant of the algorithm by

Fan et al. [12]. A height function h : S Ñ R can be extended to entire R2 using natural

FIGURE 2.3: Approximating disk by a k-gon, and the corresponding polyhedralcone.
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neighbor interpolation. In particular, for a point x P R2,

hpxq �
¸
pPS

wppxqhppq,

where wppxq is the fractional area of VorSYtxupxq that belongs to VorSppq (Figure 2.4),

i.e.,

wppxq �
AreapVorSppq X VorSYtxupxqq

AreapVorSYtxupxqq .

Since we use truncated pixelized Voronoi diagrams, we redefine the height function as

hpxq �
¸
pPS

wppxq � hppq (2.1)

where

wppxq �
|TPVorSppq X TPVorSYtxupxq|

|TPVorSYtxupxq| . (2.2)

q

FIGURE 2.4: Natural neighbor interpolation. Shaded cell is VorSYtqupqq, and each color
denotes the area stolen from each cell of VorpSq.
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FIGURE 2.5: (a) VorpSq of a set S. (b) VorpS Y tq1uq and VorpS Y tq2uq for two query
points q1 and q2. (c) PVorpS Y tq1uq and PVorpS Y q2q The colors correspond to the
bitwise-OR colors of the query point. Query point q1 and q2 have colors 01 and 10 respec-
tively, the pixels in PVorSYtq1upq1qXPVorSYq2pq2q thus get the color 01_10 � 11, where
_ is bitwise or.

Answering an NNI query. For a point x P R2, let Drpxq � Dr � x denote the disk of

radius r centered at x. Let q be a query point such that Drpqq � R. The algorithm for

computing hpqq works in two phases. The first phase calls GPUVORONOI (S) with the

following twist: the color of each triangle of the cone C♦
i is set to hppiq (instead of i).

After the first phase Crπs stores hppiq for all pixels π P TPVorSppiq. We read back the

color buffer; let C1 denote the resulting two-dimensional array. We then clear the color

buffer. The depth buffer D is is not touched, i.e., Drπs continues to store }πϕpπ, Sq}, the

distance from the center of π to ϕpπ, Sq. In the second phase, we set D to read-only mode

so that it is not overwritten and draw a polygonal cone qC ♦ � C♦ � q with q as the apex.

Adding qC ♦ is the same as computing TPVorSYtqupqq. However, the color buffer was

cleared before the second phase and thus has non-zero entries1 (corresponding to the color

of qC ♦) only for TPVorSYtqupqq. Let C2 denote the color buffer contents after the second

phase, and C2 the array resulting from reading back C2 into memory. The value of hpqq
can be computed by adding the values of C1rπs for all π for which C2rπs � 0 and finally

dividing the sum by the number of non-zero values in C2 (this is the denominator of (3.1)).

1 We assume without loss of generality that all points of S have a positive height.
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Algorithm 1 BUFFERANALYSIS(C1, C2)
for all π P C2 do

if C2rπs � 0 and C1rπs � 0 then
Nq Ð Nq � C1rπs
Dq Ð Dq � 1

return Nq{Dq

We refer to this final step of the algorithm as BUFFERANALYSIS; Algorithm 1 gives the

pseudo code.

There are four main sources of difference between our method and the traditional nat-

ural neighbor interpolation:

(i) The tessellation error caused by using k-gons instead of cones.

(ii) The discretization error.

(iii) The limited precision of the depth buffer D (which can cause problems at the bound-

aries between two Voronoi cells).

(iv) The radius of influence r.

Batching the queries. The above algorithm is very inefficient if we want to compute

heights at many points, especially since reading back a buffer is a slow step. Fan et al. [12]

have shown that by exploiting the power of modern GPUs, many queries can be batched

and answered in one pass. More precisely, if each pixel of the color buffer C has w bits,

then m ¤ w queries can be batched in one pass by encoding the colors cleverly in C: One

bit of Crπs is assigned for each query point. Let q1, q2, . . . , qm be the m query points,

and let qC ♦
i � C♦ � qi be the cone corresponding to the query point qi. The color of all

triangles in qC ♦
i is set to 2i. This ensures that colors of the m query points are bitwise-

disjoint.

The first phase of the algorithm is the same as before. Let C1 be the same as above.

In the second phase, we again set the depth buffer to the read-only mode. We draw
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Algorithm 2 BUFFERANALYSIS(C1, C2,m)
for iÐ 1 to m do
Nqris Ð 0
Dqris Ð 0

for all π P C2 do
if C2rπs � 0^ C1rπs � 0 then
v � C2rπs
for iÐ 1 to m do

if vi � 1 then {π P TPVorSYtqiu}
Nqris Ð Nqris � C1rπs
Dqris Ð Dqris � 1

for iÐ 1 to m do
Hris Ð Nqris{Dqris

return H

qC ♦
1 , qC

♦
2 , . . . , qC

♦
m but the color buffer now operates as follows. Suppose the graphics

pipeline is rendering a triangle t of color χt. If the depth of t at a pixel π is larger than Drπs,
then nothing happens. Otherwise Crπs is set to Crπs Ð Crπs _χt, where _ is the bitwise

OR operation. Recall that Drπs is not updated, as it is in the read-only mode and Drπs
stores }πϕpπq}. After the second phase, the i’th bit of Crπs is 1 if π P TPVorSYtqiupqiq
see Figure 2.5(c).

We read back the color buffer; let C2 denote the contents of the buffer after the second

phase. We compute hpqiq by summing the values of C1rπs for all pixels π for which the

ith bit of C2rπs is 1 and then dividing the sum by the number of such pixels. Algorithm 2

gives the pseudo code for doing this step efficiently; Nq and Dq are arrays of length m; for

a bit-vector v, vi denotes its i’th bit; and H is an array of length m, where Hris � hpqiq.

2.3 NNI on Grids

We now describe a faster algorithm for answering NNI queries when the query points

lie on an M � M grid Q. The algorithm can easily be extended to handle rectangular

grids. For convenience we will use Qri, js to denote the pi, jq’th query point of Q for

0 ¤ i, j   M . Let sρ denote the size of each grid cell in Q, for some positive integer s.

We refer to s as the scaling parameter, and for simplicity we assume that s is odd and that
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ρps� 1q{2   2r. Q can be mapped to the image plane Π so that each grid point of Q lies

at the center of an s � s array of pixels of Π. Since the radius of influence is r, we can

assume that all points of S lie within distance 2r from Q; see below for an explanation.

Let σ � r�2r,�2rs2 and Q � Q�σ, so S � Q. For now we assume thatN ¥ sM�4r{ρ,

i.e., M ¤ pN � 4r{ρq{s. Later we will describe how to handle larger query grids. Our

assumption ensures that Q can be mapped to Π with ρ being the resolution of each pixel.

Let α � ps � 1q{2 � 2r{ρ. We map the bottom left corner of Q to that of Π, so the query

point Qri, js maps to the pixel ps � i� α, s � j � αq; see Figure 2.6.

Let B � t
?
wu, where w, as above, is the number of bits in the color buffer. For

simplicity, we assume that B is a divisor of M . We partition Q into pM{Bq2 query blocks,

each of size B �B, with the pi, jqth block, for 0 ¤ i, j  M{B, being

Qi,j � QriB, pi� 1qB � 1srjB, pj � 1qB � 1s.

See Figure 2.7 (a). A query point q P Q can be represented by a pair pa, tq, where a P
r0,M{B � 1s2 is the index of the query block that contains q, t P r0, B � 1s2 is the offset

of q within that query block.

We process all B2 ¤ w NNI queries in each block in one pass, using the algorithm

Π

2r ρs

2r

FIGURE 2.6: Embedding Q on Π; s � 3 and r � 2ρ.
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described in Section 2.2. Processing all queries in Q thus requires pM{Bq2 passes, each

involving the expensive operation of reading back the GPU memory to the main memory.

One-pass algorithm. By exploiting the grid structure of query points and the fact that

a query q is affected by only those points p for which Drppq and Drpqq intersect (i.e.,

}pq} ¤ 2r), we show that we can answer all queries in one pass provided that

(A1) M ¤ pN � 4r{ρq{s, and

(A2) r ¤ sρB{2.

The second assumption is reasonable for high resolution LiDAR data sets because the

height of a point can be interpolated from the nearby sampled points. For a graphics card

with w � 32 and with s � 5 we will assume that r   5 meter for an output grid with a

resolution of sρ � 2 meter. In other words, the result of a query is not affected by an input

point that is more than 20 meters away. With high-resolution LiDAR data sets this is not a

bad assumption. Such gaps usually appear when buildings and other features are removed

using a classification algorithm, or at lakes and similar features.

Here is the key idea that enables us to answer all queries in one pass assuming that (A1)

and (A2) hold. We call two points p, q P S independent if TPVorSppq and TPVorSpqq are

disjoint. If }pq} ¡ 2r, then, by definition of TPVorpSq, p and q are independent. Let

q1, . . . , qu be a set of query points such that }qiqj} ¡ 2r for any pair i � j. Then qC♦
i

and qC♦
j are disjoint. We can potentially use the same color for all of these query points

because no pixel will be rendered by two such cones in the second pass of the NNI query-

answering algorithm. The difficulty with using the same color for all qi’s is that the color

of qC♦
i no longer encodes the value of i, so the algorithm does not know which query point

colored a given pixel. However, qi’s being independent implies that there is at most one

query point for each pixel π that could color π, namely, the query point closest to π and it

lies within distance r from π.
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In our case, the query points lie on a grid Q and we assume that r   sρB{2. Therefore

for any two query blocks Qa and Qb and an offset t, the query points pa, tq and pb, tq are

independent, as the distance between query points with the same offset in two adjacent

blocks is sρB. In other words, for any t P r0, B � 1s2, all points in

Q|t � tpa, tq | a P r0,M{B � 1s2u,

the set of all query points with offset t, are independent; see Figure 2.7 (b). We can

therefore assign the same color, say, χ, to all points in Q|t. If a pixel π is colored χ, we

can determine in Op1q time which point in Q|t colored π. Hence, we proceed as follows.

For t � pt1, t2q P r0, B � 1s2, we set χptq � 2t1B�t2 and assign the color χpqq to all

triangles of the query cone C♦ � q for q P Q|t. Let

C � tqC ♦
ij � C♦ �Qri, js | 0 ¤ i, j  Mu

be the set of all query cones.

ρsM

Q0,0

Q0,1

Q0,2 Q1,2

Q1,1

Q1,0 Q2,0

Q2,1

Q2,2

ρsB

(a)

r

ρs

ρsB (> 2r)

(b)

FIGURE 2.7: (a) Splitting Q into query blocks of size B � 4 query points. (b) All the
Q|r1,1s query points are independent since their areas of influence (depicted by circles in
the figure) are disjoint.
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Algorithm 3 BUFFERANALYSIS(C1, C2,Q)
for iÐ 0 to M � 1 do

for j Ð 0 to M � 1 do
Nqri, js Ð 0, Dqri, js Ð 0

for all π P C2 do
if C2rπs � 0 and C1rπs � 0 then
v � C2rπs
for `Ð 0 to w � 1 do

if v` � 1 then
pi, jq = NN(π, `)
Nqri, js Ð Nqri, js � C1rπs
Dqri, js Ð Dqri, js � 1

for iÐ 0 to M � 1 do
for j Ð 0 to M � 1 do
Hri, js Ð Nqri, js{Dqri, js

return H

The first pass of the algorithm is the same as in Section 2.2, i.e., we compute TPVorpSq.
In the second pass, we render all cones in C one by one while keeping the depth buffer

in the read-only mode. Next, we read the color buffer back to main memory, and let C2

denote its content. We process each pixel π as follows: If the `th bit of π is 1, i.e., it has

been rendered by a query point with the offset l � pt`{Bu, ` mod Bq, then we compute

in Op1q time the query point Qri, js that rendered π, i.e., the nearest point to π in the set

Ql. Let NN(π, `) denote this procedure. We update the height of Qri, js appropriately.

Algorithm 3 gives the pseudo-code of this step.

Expanding the region of influence. The previous description bounds the region of in-

fluence r by sρB{2. However, we can make r be of any size through expanding the size

of a query block and then handling subsets of queries in each block in separate passes

of BUFFERANALYSIS. We expand the size of a query block by making B � ct
?
wu for

c ¥ 1. For simplicity we will use c � 2k for some power k. Expanding B such that (A2)

holds means that for any two query blocks Qa and Qb and an offset t, the query points

pa, tq and pb, tq are still independent.

However, we run into the issue that B2 ¥ w, and as a result, we do not have a unique

bit in the color for each query in the query block. To handle this we perform multiple
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passes of BUFFERANALYSIS with a slight modification of NN. If c � 2 then we see that

we will need c2 � 4 passes. For pass j for 0 ¤ j   c2 we only consider offsets t � pt1, t2q
such that t1B � t2 mod c2 � j, and as such, we set χpt, jq � 2pt1B�t2�jq{c

2 . We can again

reverse this procedure in NNpπ, `, jq. A pixel π with the `th bit set to 1 in pass j of c2 was

rendered by a query point with offset

l � ptp` � c2 � jq{Bu, p` � c2 � jq mod Bq.

We can of course again compute in Op1q time the query point Qri, js that rendered π,

i.e., the nearest point to π in the set Ql. Keeping Nqri, js and Dqri, js from Algorithm 3

through all query passes, we can at the end calculate and return the heightsH for the entire

M �M grid.

This general procedure of expanding B enables us to set a variable region of influence

based on the properties of the input data set and desired interpolation. The particular as-

signment χpt, jq and procedure NNpπ, `, jq are merely examples of methods of dividing

and labeling subsets of each query block. As long as we have a deterministic process

NNpπ, `, jq for any size B, this method will work. Thus, we can use more creative num-

bering methods to make c any constant ¥ 1 rather than just 2k.

Handling larger grids. The preceding algorithm assumed that Q was small enough that

the entire Q could be mapped to Π. This is not always realistic since the value of N is

limited by the graphics hardware. For example, N ¤ 214 � 16384 on modern graphics

cards such as the NVIDIA GeForce GTX 470. With a scaling parameter s � 5, M ¤
t214{5u � 3276, implying that we can process 32762 � 107 grid query points in a single

pass. Recall that each pass consists of two rendering phases and the subsequent buffer

analysis. For sρ � 2 meter, this corresponds to computing a grid DEM for a region of

roughly 70 � 70 km2 in area. However, we often want to generate grid DEMs that are

considerably larger, in which case we proceed as follows.

Let µ � pN � 4r{ρq{s, the largest grid of query points we can handle in one pass is
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µ� µ. Thus, if M ¡ µ we partition Q into µ� µ sub-grids; see Figure 2.8(a) and process

these sub-grids individually. Let m � M{µ, then m2 is the number of sub-grids. We

define

Qi,j �
¤

pl,kqPr0,µ�1s2

Qrl � iµ, k � jµs

to be the pi, jq’th sub-grid, for i, j   m. For sub-grid Ql we let Ql � Ql�σ. We interpolate

each Ql on the GPU independently, using the algorithm described above. Thus we need to

find the set Sl � Ql X S of input points relevant for the queries in Ql. Note that the Sl’s

are not disjoint; see Figure 2.8(b). Let M and B be the amount of points that fit in main

memory and in a disk block respectively. For simplicity we assumes that B divides M.

If |S|   M, then extracting the set Sl is not hard — we can construct a two-dimensional

table to store S and extract Sl efficiently for each sub-grid Ql. This is, however, more

challenging and expensive when, as is typically the case, S is too large to fit in the main

memory. For example, the Denmark data set we have consists of 25 billion points. In this

case, we preprocess S as follows.

We can keep up to M{B streams of points by storing a block of B elements for each

stream in memory, and the rest on disk. If m2 ¤ M{B, then we construct a stream for

each bin Ql. We then distribute each point p P S to the bins for the sub-grids tQl|p P Qlu.
If m2 ¡ M{B we cannot hold enough streams in memory and instead use a recursive

procedure. We partition the m2 sub-grids into M{B square partitions of dimension n �
m{aM{B.

Pi,j �
¤

pl,mqPr0,n�1s2

Ql�in,k�jn ,

for 0 ¤ i, j   aM{B (see Figure 2.8(b)). Since there are M{B partitions, we can

construct a stream for each of them. We then distribute each point p P S into the stream

representing partition Px if p P Px � Px � σ, where σ � r�2r,�2rs2. Following this
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FIGURE 2.8: (a) When Q is too big to handle in one pass, we split it up into sub-grids of
size µ. To filter the points of S to the right place we may need several passes where the
grids are split into M{B partitions of size n by n. (b) This figure shows Q1,1 � Q1,1 � σ
(contained in the dotted square) and P1,1 � P1,1 � σ (contained in the dashed square).

distribution step we recurse on each partition individually. The depth of the recursion is

Oplog?
M{B

mq � OplogM{BM{µq.

2.4 Implementation and Experimentation

Here we describe implementation details that contribute to the efficiency and quality of

our algorithm. We subsequently offer empirical results for tests of the algorithm’s speed

and quality on real-world terrains.

Platform. We ran our experiments on an Intel Core2 Duo CPU E6850 at 3.00GHz with

4GB of internal memory. We used Ubuntu 10.4 and two 1TB SATA disk drives in a RAID0

configuration. Additionally, the machine contained a NVIDIA GeForce GTX 470 graphics

card running CUDA 3.0. This card has 1.2 gigabytes of memory, 448 CUDA cores, and

14 multiprocessors.

The algorithm was implemented in C++ using OpenGL to interact with the graphics
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Afghanistan DKPART Fort Leonard Wood
Size of input (106) 186 1038 2180
Size of output (106) 9.5 213 151
NNI with CUDA 163 1238 2190

Binning Time 67 558 1030
Interpolation Time 96 680 1160

NNI without CUDA 1252 14323 11164
Binning Time 91 569 1036
Interpolation Time 1161 13754 10128

Linear 962 7377 20307
RST 5698 66729 122305

Table 2.1: Time comparison of competing interpolation algorithms (times in seconds)

card. The C1, C2, and D buffers were implemented using OpenGL’s frame-buffer and

render-buffer objects. Additionally, we used a display list to render the cones C♦. As

described, our algorithm uses the same radius of influence r for all C♦, however, for

flexibility our implementation supports using one radius for input points rs and another

one for queries rq. Adjusting these values separately allows us to optimize rq based on

hardware bounds imposed by w, while adjusting rs based on properties of our data sets.

2.4.1 Reducing communication complexity

The computational efficiency is one of two important factors in the real-world performance

of our algorithm. We have taken great care to minimize the other major component, com-

munication cost, as well. As mentioned in the introduction, the cost of transferring buffers

between GPU and main memory is substantial, but the cost of transferring data between

the hard drive and the main memory is also substantial, especially for large data sets that

do not fit in main memory.

GPU to CPU communication. As described in Section 2.2, the colors buffers C1, C2 are

read back into memory resulting in C1 and C2. They are then used by the BUFFERANAL-

YSIS algoritm, the final step in the interpolation. However, each of these buffers contains

an s � s square of pixels for each query point of Q, which means that each buffer is a
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factor of s2 larger than Q. Thus, we are transferring far more data between GPU and CPU

memory than would be required if we could just transfer the final interpolated values (i.e.

the buffer H from BUFFERANALYSIS).

Therefore, we have used CUDA to implement BUFFERANALYSIS directly on the

graphics card. As discussed previously, CUDA can directly access the color buffers from

GPU memory and likewise can keep two dimensional arrays of its own for Nq, Dq, and

H . In performing this final summation step in CUDA, each pixel in the color buffer is

accessed in parallel, and for each bit that is set to one, the appropriate values in Nq and Dq

are incremented. Because this may cause the same memory location to be written to by

multiple threads simultaneously, we use a CUDA function for atomic addition, providing

serialization and synchronization of the many threads. Thus, we only perform one read

from GPU memory to main memory, with only one 32-bit word being transferred for each

query point. This has a drastic effect on running times of our algorithm, which will be

demonstrated in our experiments.

Reducing disk-transfers. As described in Section 2.3 we preprocess S by binning the

data into sub-grids of size µ � µ, before feeding them to the GPU one by one. We have

used the efficient disk-based stream abstractions provided by the Templated Portable I/O

Environment (TPIE) [5] library to implement the recursive algorithm that performs this

binning.

Additionally, the final output from the interpolation routine is a stream of points pi, j, hpi, jqq
which typically need to be converted into a row-major raster grid sorted on i and j. For

this we use the external-memory sorting algorithm [4] from TPIE, which is asymptotically

optimal with respect to disk-memory transfers. The time taken by the final step is not

included in the results presented in this section since this step is the same for all of the

algorithms presented and it is not the bottleneck in the running time.
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2.4.2 Performance

In analyzing our algorithm, we compared our results against results from applying a reg-

ularized spline with tension (RST) and linear interpolation based on the global Delaunay

triangulation of the data. The RST implementation is from Danner et al.’s previous work

on TerraSTREAM[10]. We also tested our NNI implementation against the linear interpo-

lation, in which we compute the Delaunay triangulation of the entire data set, as presented

in [2], followed by interpolating the value of each query point. Both of these algorithms

are sequential.

Data sets. For our tests, we ran our different interpolation schemes on three main data

sets. The first was LiDAR data that covers most of Denmark supplied by COWI A/S. The

entire point cloud is 1.5 terabytes in size with 26 billion data points. For a number of

our experiments we used a portion of this data set, which we will refer to as DKPART.

DKPART contains 1 billion data points over a 10 kilometer by 90 kilometer region and is

27 gigabytes on disk. This gives a point density of 0.9 points per square meter on average.

Because Denmark is relatively flat, we also ran tests for both speed and quality on a

point cloud of a mountainous region in the Paktika province of Afghanistan (data cour-

tesy of ARO). This data set is 3.5 gigabytes on disk and contains 186 million data points

over an approximately 4000 m2 region. This is approximately 6.5 points/m2 on average.

Because the Afghanistan data set comes from a mountainous region, the data is useful for

comparing how different algorithms handle steep slopes and ridges.

The third dataset covers an approximately 600km2 region around Fort Leonard Wood

in Missouri with a dense point cloud consisting of about 2.2 billion points (data courtesy

of ARO) and takes up 57 gigabytes on disk. That is about 3.6 points /m2 on average.

The Afghanistan point cloud has not been substantially filtered and contains many

non-ground points (such as points on vegetation). For the quality tests we used a subset
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of the points without many of the non-ground points2. This data set, which we refer to as

Afghanistan-1, has a point density of 0.26 points per square meter. To test the significance

of the density of the points, we removed a portion of the points, keeping only one out

of sixteen data points at random. This produces a point density of 0.016 points/m2. We

denote this data set as Afghanistan-2.

Parameter choices. Within our algorithm there are numerous parameters that can be

adjusted to shift speed and quality trade-offs. The algorithm’s precision can be modified

through its scaling parameter s, the number of faces k of the C♦’s, and the cone radii rs

and rq. For our tests we set k � 6 and rs � 20 meters. We set rq based on ρ and w, such

that rq � sρB{2. In our tests the word size w of the color buffers was set to 32 bits (though

this can easily be increased to 128 bits on modern graphics cards), and thusB � 5. For the

scaling parameter, we tested the algorithm with varying values, but in experiments below

we used s � 5. These parameters were chosen to offer a sufficiently high quality of output

without unnecessarily slowing the implementation.

Efficiency. We ran the various interpolation algorithms on our Afghanistan, Fort Leonard

Wood and DKPART data sets. For these general tests, we used a grid resolution of 2

meters. As shown in Table 2.1, our NNI implementations run significantly faster than the

linear interpolation and the RST based interpolation. The NNI algorithm takes only 17%

of the time of the linear interpolation for both the Afghanistan and DKPART data sets, and

only 11% of the time on the Fort Leonard Wood data set. In comparison with the RST

algorithm, the NNI implementation takes only 2.8% of the time on the Afghanistan data

set and approximately 1.8% of the time on both the DKPART and Fort Leonard Wood data

sets.

Worth noting is the breakdown of the time spent binning the data and the time spent

performing the interpolation. On all three data sets when running the CUDA-based imple-

mentation, the binning takes a little under half of the running time of the algorithm. While

2 This was done by only using the “last return”-points for each pulse.
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necessary in some cases, many data sets are already stored in tiles such that binning could

be skipped. In contrast, the RST method spends most of the time on interpolation, while

the linear-interpolation algorithm spends most of the time on constructing the TIN.

The time results also show the significant advantage provided by CUDA, with the

CUDA based implementation taking 10%-20% of the time of the non-CUDA based im-

plementation.

It it worthwhile to compare the bottlenecks in the two different NNI implementations.

The experiments were again done on the Afghanistan data set. As shown in Table 2.2,

without using CUDA the bottleneck in the implementation is reading C to main memory.

At both grid resolutions, reading C takes approximately 70% of the total running time

of the interpolation. And, since a smaller grid resolution requires more tiles, there are

more read backs on the 0.8 meter resolution and thus the time of the algorithm increases

significantly.

With our CUDA implementation, we remove the high cost of GPU memory reads

since we are reading back a fraction of the data, but the BUFFERANALYSIS step is highly

dependent on the grid resolution. With a 2 meter resolution, the bottleneck is clearly

merely drawing the cones for the Voronoi diagrams, and BUFFERANALYSIS takes negli-

gible time. With a higher grid resolution of 0.8 meters, the expensive atomic add operation

is performed many more times in the BUFFERANALYSIS step and thus it takes far more

time. However, even with the bottleneck shifting to the CUDA step, the algorithm is still

much faster with CUDA than without it.

Quality of output. It is, of course, necessary to compare not just the speed but also the

quality of these different interpolation schemes. To do this we compared the smoothness

of the contour maps from the NNI and linear interpolation over the Afghanistan data set.

The entire Afghanistan data set is very dense, with 6.5 points per square meter. Even at

a 0.8 meter grid resolution, very few differences in contour maps were seen between the

two interpolation methods. This was also obstructed by the many trees in the region which
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Without CUDA With CUDA
Grid Resolution (m.) 0.8 2 0.8 2
GPUVORONOI (S) 411 73 76 74

Read C1 814 116 N/A N/A
Draw Query Cones 51 5.84 39 6.96

Read C2 875 135 N/A N/A
BUFFERANALYSIS 102 9.57 183 0.46

Write points 4.01 0.92 4.2 0.8
Total running time 2289 371 337 105

Table 2.2: CUDA’s effect on NNI algorithm timing, running on the Afghanistan data set
(times in seconds)

Afghanistan-1 Afghanistan-2

FIGURE 2.9: Contour map comparison. In both figures, the grid used for the red (resp.
black) contours were generated from the Afghanistan data using linear (resp. natural
neighbor) interpolation.

cause frequent changes in elevation in the grid. Therefore, to perform these quality tests

we used the Afghanistan-1 and Afghanistan-2 data sets.

We ran both the linear interpolation and NNI on the data, with a scaling parameter of 5

and a grid resolution of 2 meters. Finally, we use the GRASS GIS system [16] to compute

the contour lines from the interpolated data with a 1 meter increment between contour

levels.

We present in Figure 2.9 sample images from each pair of contour maps. Comparing
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the maps, it can be clearly seen that at certain points, especially around curves, the linear

interpolation from the triangulation produces jagged results while the NNI maintains its

smoothness. It is clear that as the input data becomes sparser in Afghanistan-2, the linear

interpolation becomes increasingly jagged, while the NNI output remains smooth.
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3

3D Grid Construction

3.1 Introduction

As mentioned in the introduction, the new access to high resolution data sets provides in-

teresting insight into terrains. We now look at how we would handle spatial-temporal data,

such as if we had LiDAR scans of the same region over multiple years. These scans pro-

vide a point cloud S in R3 with time as the third dimension. When discussing a point p P S
we will refer to xp, yp, and tp as the points position in xyt-space. As described previously,

for the case of terrain data, the point cloud has an associated elevation function h : S Ñ R.

In order to make use of a 3D point cloud we revisit the ideas of a pixelized Voronoi dia-

gram and natural neighbor interpolation, but now in higher dimensions. We subsequently

discuss memory and time trade-offs for interpolating over a 3D grid, and finally compare

results from running different versions of our interpolation algorithm. Although our al-

gorithm is described in terms of spatial-temporal terrain data, it can be applied to any 3D

point cloud, and could be easily extended to higher dimensions.
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3.2 Discretized Voronoi Diagram

We first redefine the Voronoi diagram in R3. Let S � tp1, . . . pnu be a set of n points in

R3. For each point p P S, its Voronoi cell, denoted by VorSppq, is defined as

VorSppq � tx P R3 | }xp} ¤ }xq}@q P Su ,

where }�} is the Euclidean distance, i.e., a point x P VorSppq if p is the point in S closest to

x. The Voronoi diagram of S, VorpSq, is the subdivision of space induced by the Voronoi

cells of points in S.

Hoff et al.[17] have described a GPU based algorithm for computing the Voronoi di-

agram of a set of points. Since we use a slightly different algorithm, we describe the

algorithm for the sake of clarity and completeness. A cube K consisting of N � N � N

voxels can be regarded as the cube r0, N � 1s3 in R3. Any cube R � R3 can be mapped to

K using an affine transformation. Given the set S and a cube R, we are interested in com-

puting a discretized Voronoi diagram of S within R, which we define below. We assume

that R is mapped to the image cube K. Each voxel π P K corresponds to a (tiny) cube

Rπ � R3 where VolumepRπq � ρ3 � VolumepRq{N3. We refer to ρ as the resolution

of K. All of Rπ is congruent to a sampling of R3 at the center of the cube. Although it

is a slight deviation from the typical notion, we will consider the voxel π to be precisely

the center of the cube Rπ. For example, for π P K let ϕpπ, Sq be the point in S whose

Voronoi cell contains voxel π. If multiple Voronoi cells intersect Rπ, the entire volume of

Rπ is described based on the sampling from π. For a point p P S, we define the discretized

Voronoi cell of p to be

DVorSppq � tπ | ϕpπ, Sq � pu,

i.e., the set of voxels that lie in VorSppq; see Figure 3.1(a). The quantity ρ3|DVorSppq|
approximates the volume of VorSppq within R. The approximation error depends on ρ.

For a fixed R, the error decreases as we increase N , namely,

lim
NÑ8

ρ3|DVorSppq| � VolumepVorSppqq.
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(a) (b)

FIGURE 3.1: (a) A discretized Voronoi diagram for eight points. (b) The pixelized Voronoi
diagram for t � 3, PVorpS, 3q, shown as a slice of K from (a).

Similar to our approach for 2D Voronoi diagrams, the problem of computing DVorpSq
can be formulated as that of rendering a scene. For a point pi P S, let fi : R3 Ñ R be

defined as fipπq � }πpi} �
apxπ � xpiq2 � pyπ � ypiq2 � ptπ � tpiq2 where π P R3. The

lower envelope f of tf1, . . . , fnu is defined to be

fpπq � min
1¤i¤n

fipπq ,

which is the distance from q to its nearest neighbor. VorpSq is the projection of the graph

of f on the xyt-hyperplane.

This method requires drawing a four dimensional object, which is unfortunately not

possible on the GPU. To formulate the problem as that of drawing a 3D scene, we must

reduce the dimensionality by one. To do this we only examine a plane of the cube K with

the time set constant to τ . We will refer to the plane t � τ in R3 as Πτ . For a point p P S
we define the pixelized Voronoi cell of p for time τ to be

PVorSpp, τq � tπ|φpπ, Sq � p^ tπ � τu

i.e., the set of pixels that lie in VorSppq X Πτ . We refer to the pixelized Voronoi diagram

for time τ as PVorpS, τq. See Figure 3.1(b).
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(a) (b)

FIGURE 3.2: Voronoi diagram as the lower envelope of a set of hyperboloids. (a) shows
the hyperboloids from a side view. (b) looks at the hyerboloids from below revealing the
Voronoi diagram. The outer cells of a Voronoi diagram are infinite, but in this figure their
sizes are limited because the hyperboloids are of a limited height.

The problem of generating PVorpS, τq from a 3D scene is now considerably easier.

Setting t � τ , we find that the distance function is

fi,τ pπq �
b
pxπ � xpiq2 � pyπ � ypiq2 � pτ � tpiq2,

which is one sheet of a hyperboloid of revolution of two sheets. Thus, PVorpS, τq is

the projection of the graph of fpx, τq � mini fi,τ pxq onto the xy-plane. We define

Hptoq : z � ax2 � y2 � t2o in xyz-space. Therefore, the graph of each fi,τ is hyper-

boloid Hi,τ � Hpτ � tpiq � Pτ ppiq where Pτ ppiq is the projection of pi onto Πτ . Let

Hτ � tH1,τ , . . . , Hn,τu. A point x is in VorSppiq X Πτ if fpx, τq is realized by the func-

tion fi,τ at x, i.e., the line oriented in the �z direction hits Hi,τ first. In other words,

ϕpπ, Sq � pi for π P Πτ if Hi,τ is the cone seen at pixel π when the set Hτ is viewed

from z � �8. If we set the color of Hi,τ to i, then the color buffer Cτ rπs stores the

index of the point and the depth buffer Dτ rπs � }πϕpπ, Sq}, where both Cτ and Dτ rep-

resent the image plane Πτ . (We view each cell of the color buffer and depth buffer as a

single word, concatenation of R, G, B, A components.) With this method we can generate

PVorpS, τq using GPU rendering; see Figure 3.2. In order to calculate DVorpSq we need

34



P0

P1

P2

FIGURE 3.3: The triangulation of hyperboloid into two triangle strips.

only calculate PVorpS, τq for all τ at ρ increments.

It is not easy to render a hyperboloid using a GPU, so we approximate the shape with

triangle strips. We first define planes Pj in xyz-space where P0 is the plane through the

vertex at z � to and Pj � P0�h � j where h is some increment in z. For each plane Pj we

take the intersectionHi,τXPj and approximate the circular intersection by a regular k-gon.

We can then create triangles between adjacent k-gons using non-intersecting 2k triangles.

The resulting polygonal hyperboloidH♦
τ is composed of 2kjmax triangles, as seen in Figure

3.3. We replace Hi,τ by H♦
i,τ � H♦

τ � Pτ ppiq. The error in tessellation induced by this

approximation can be controlled by choosing the value of h and k appropriately.

Finally, we note that we want to limit the region of influence for the points. In 3D we

define the region of influence to be cylindrical with radius of influence r such that each

point in S can only influence pixels within a radius r in the xy-plane and a distance r in

time. We limit the region of influence through the truncated Voronoi diagram. A truncated

pixelized Voronoi cell is defined as

TPVorSpp, τq � tπ | ϕpπq � p^ }Ptπppqπ}   r ^ |tπ � tp| ¤ ru .

Thus, a pixel π that is not within the cylindrical region of influence of all points of S does

not belong to the Voronoi cell of any point. Let Cr denote the cylinder of radius r and

height 2r centered at origin. We can assume that S � R � Cr, as no point outside this
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region will contain any pixel of K in its Voronoi cell. This truncation is realized by limiting

the range of times in which points are considered as well as the height of the hyperboloids

H♦
i,τ . When rendering TPVorpS, τq we only consider the subset Spτq � tp P S||tp� τ |  

ru. With a slight abuse of notation we use H♦
i,τ to denote the truncated hyperboloid as

well. For each pi P S, we set the color of each triangle of H♦
i,τ to i and pass them to the

graphics pipeline with z � �8 as the viewpoint. C and D together contain TPVorpS, τq.
We refer to this algorithm as GPUVORONOI (S,τ ). As mentioned above, there might be

pixels that are not touched by GPUVORONOI (S,τ ). We assume that C is initialized with a

value that allows us to distinguish these pixels from the pixels that are part of the truncated

diagram, e.g., we set their color to 0. The collection of of buffers for TPVorpS, τq for all

τ determines TPVorpSq.

3.3 Natural Neighbor Interpolation

In this section we first formally define natural neighbor interpolation (NNI), then describe

a GPU algorithm for answering NNI queries, which is an extension of the algorithm pre-

sented in Section 2.2. A height function h : S Ñ R can be extended to the entire R3 using

natural neighbor interpolation. In particular, for a point q P R3,

hpqq �
¸
pPS

wppqqhppq,

where wppqq is the fractional volume of VorSYtqupqq that belongs to VorSppq (Figure 2.4),

i.e.,

wppqq �
VolumepVorSppq X VorSYtqupqqq

VolumepVorSYtqupqqq .

Since we use truncated pixelized Voronoi diagrams, we redefine the height function as

hpqq �
¸
pPS

wppqq � hppq
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(a) (b)

FIGURE 3.4: (a) A query point in the middle of a point cloud of eight points in R3. (b)
The voxels of the query’s Voronoi cell colored based on the cells they stole volume from.

where

wppqq �
|TPVorSppq X TPVorSYtqupqq|

|TPVorSYtqupqq| . (3.1)

See Figure 3.4.

To calculate TPVorpSq and TPVorpS Y tquq, we must discretize the space into time-

slices and handle each separately as previously explained. We rearrange equation 3.1 as

summations over each Πτ that contributes to the Voronoi cell of q:

hpqq �
°
pPS |TPVorSppq X TPVorSYtqupqq| � hppq

|TPVorSYtqupqq|

�

tq�r¸
τ�tq�r

¸
πPTPVorSYtqupq,τq

hpφpπ, Sqq

tq�r¸
τ�tq�r

|TPVorSYtqupq, τq|

In the equation above we see that the denominator, which we will refer to as Dpqq, is the

simply the number of voxels in the truncated pixelized Voronoi cell of q. The numerator,

referred to as Npqq, is a sum of the heights represented by each voxel in TPVorpSq from

the Voronoi cell of q. We note that we only sum over τ in the range tq � r to tq � r. This
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is because this range is the query point’s region of influence in time, and as such no voxel

π for which |tπ � tq| ¡ r could be in the Voronoi cell of q. We increment τ by ρ as this is

the separation between voxels adjacent in time in K.

Answering an NNI query. The algorithm for computing Npqq and Dpqq requires it-

erating over each value for τ and in each iteration performing two phases of GPU ren-

dering and analysis. Because we iterate τ by ρ, the algorithm requires ∆ � 2 r
ρ
� 1

iterations. We describe here the two phases for a given iteration τ . The first phase calls

GPUVORONOI (S,τ ) with the following twist: the color of each triangle of the hyper-

boloid H♦
i is set to hppiq (instead of i). After the first phase Cτ rπs stores hppiq for all

pixels π P TPVorSppi, τq. We read back the color buffer; let C1
τ denote the resulting two-

dimensional array. We then clear the color buffer. The depth buffer Dτ is is not touched,

i.e., Dτ rπs continues to store }πϕpπ, Sq}, the distance from the center of π to ϕpπ, Sq.
In the second phase, we set Dτ to read-only mode so that it is not overwritten and

draw a polygonal hyperboloid qC ♦
τ � H♦

τ � q with q as the apex. Adding qC ♦
τ is the

same as computing TPVorSYtqupq, τq. However, the color buffer was cleared before the

second phase and thus has non-zero entries1 (corresponding to the color of qC ♦
τ ) only for

TPVorSYtqupq, τq. Let C2
τ denote the color buffer contents after the second phase, and C2

τ

the array resulting from reading back C2
τ into memory. We build the value for Npqq and

Dpqq over all iterations. The value of Npqq is computed by adding the values of C1
τ rπs for

all π for which C2
τ rπs � 0 and the value for Dτ pqq can be found by summing the number

of non-zero values in C2
τ . We refer to this step of the algorithm as BUFFERANALYSIS τ .

Once this sequence of GPUVORONOI (S,τ ) and BUFFERANALYSIS τ have been com-

pleted for all necessary values of τ we can perform the final calculation for hpqq by merely

dividing Npqq by Dpqq.
While this algorithm discusses the process of performing a natural neighbor interpola-

tion query for a single point, we can use the same optimizations outlined in Section 2.2 to

1 We assume without loss of generality that all points of S have a positive height.
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perform an N �N grid of queries at time τ simultaneously.

3.4 NNI on Cubes

We now consider the problem of performing N3 natural neighbor interpolation queries on

a N � N � N grid. Given we can compute an N � N grid of queries for some time τ ,

we would now like to do this for all N times. We outline below three different algorithms

for doing this. Each discusses the trade-off of time, which is spent through the rendering

of hyperboloids, against memory. We describe algorithms below based on the number of

times each point p P S is rendered on the GPU.

Rendering Op∆2q hyperboloids per point. We first examine the naı̈ve method for per-

forming the N3 NNI queries. Here, we can perform the algorithm described above to

calculate the N �N grid of queries for each time independently. We will refer to the grid

of queries for a given time τ as Qτ .

For performing NNI for Qti for any time to we must render TPVorpS, τq for ti � r ¤
τ ¤ ti � r. All points p for which tp � ti must be used to render a hyperboloid for

each TPVorpS, τq and therefore each point is used ∆ times. Additionally, we must render

TPVorpS, τq for some τ for all Qt for which |τ � t| ¤ r. Thus, each TPVorpS, τq is also

computed ∆ times. Because each point is used for ∆ different pixelized Voronoi diagrams

and each pixelized Voronoi diagram is generated ∆ times, each point is usedOp∆2q times.

Rendering Op∆q hyperboloids per point. As should be apparent from the description

above, there is redundancy in the computations performed for different Qt. Here, we look

to avoid repeatedly computing each TPVorpS, τq∆ times. We are able to do this, and thus

save computational complexity, with a trade-off of memory space.

To describe the algorithm, we first define additional notation. Let framebuffer Fτ refer

to the combination of Cτ and Dτ describing TPVorpS, τq. We look to interpolate the

queries Qt0 . . .QtN�1
. To interpolate Qti , we must generate Fti�r,Fti�r�ρ . . .Fti�r and
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perform the interpolation on each time-slice. When we proceed to Qti�1
, we must now

generate Fti�1�r,Fti�1�r�ρ . . .Fti�1�r. In the simple case that ti�1 � ti � ρ, this becomes

Fti�r�ρ . . .Fti�r,Fti�1�r. From this it is clear that all of the framebuffers except for the

last, Fti�1�r, were calcualated for the previous query grid and thus can be reused in the

interpolation and BUFFERANALYSIS step. We only need to run GPUVORONOI (S,ti�1 �
r). Therefore, we must store ∆ framebuffers: ∆�1 to save values from the previous query

grid and one to generate the new TPVor. Doing this for Qi for all 0 ¤ i   N in order

lets us generate each Fti only once. Through this method, each point p is rendered Op∆q
times: once for each TPVorpS, τq for tp � r ¤ τ ¤ tp � r.

Rendering Op1q hyperboloids per point. We can further decrease the number of times

each point is used by drawing a cone for each point only once and then repeatedly modi-

fying the framebuffer. We can only do this if the data is in discrete time slices; we define

Sτ to be the set of data from one time slice tp P S|tp � τu. We define Fτ1τ2 to be the

framebuffer containing the Voronoi diagram for Sτ1 from the perspective of time τ2, ie.

TPVorpSτ1 , τ2q. Again Cτ1
τ2

and Dτ1
τ2

are the color and depth buffer of Fτ1τ2 .

Our goal is to generate Fti by only rendering Fττ for all τ once, and thus rendering

a hyperboloid for each point only once. An overview of the algorithm can be seen in

Figure 3.5. We note that when we are generating Fττ , we need only draw a cone for each

point p P Sτ as we did for 2D data. Given that we have Fττ for all τ we can generate

Fti through a two step process. First, we need to be able to convert Fττ to Fτti for each

τ . We call this function TIMESHIFTpFττ , π, τ, tiq. This gives us the Voronoi diagram for

each slice of data as viewed from time ti. We must then combine these framebuffers,

specifically Fti�rti . . .Fti�rti , to create Fti , as though we had taken the lower envelope of

the hyperboloids drawn on each respective framebuffer. We only consider this subset of

framebuffers because only the data in Sti�r . . . Sti�r has a region of influence that reaches

ti. We call this algorithm GPUCOMBINE.

In performing TIMESHIFTpFττ , π, τ, tiqwe look to find the distance }π1φpπ1, Sτ q} given
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. . .. . .

Render Cones

TimeShift

FIGURE 3.5: The process of creating Fti from sets of data Sti rendering each point only
once.

that π1 � pxπ, yπ, tiq. We can calculate }π1φpπ1, Sτ q} �
apDτ

τ rπsq2 � pτ � tiq2 since

Dτ
τ rπs �

apxπ � xφpπ,Sτ qq2 � pyπ � yφpπ,Sτ qq2. This is because the nearest neighbor from

Sτ for any given pixel does not change, but the distance to it now includes the distance

in time; see Figure 3.6. As such we can perform TIMESHIFTpFττ , π, τ, tiq for each pixel

π P Fττ for ti � r ¤ τ ¤ ti � r.

π π
Fti

ti
Fti

ti+1

FIGURE 3.6: TIMESHIFT: Modifying the distance in the framebuffer for each pixel to
reflect an offset in time.
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Algorithm 4 GPUCOMBINE(Fti)
for all π P Fti do

Ctirπs Ð 0, Dtirπs Ð 8
for all π P Fti do

for all Fττ P Fti do
if TIMESHIFTpFττ , π, τ, tiq   Dtirπs then

Dtirπs Ð TIMESHIFTpFττ , π, τ, tiq
Ctirπs Ð Cτ

τ rπs
return Fti

Given that we can calculate TIMESHIFT for all pixels in Fti�rti�r . . .F
ti�r
ti�r we can now

perform GPUCOMBINEpFti�rti�r . . .F
ti�r
ti�rq with the goal of producing Fti . In combining this

set of framebuffers we would like to compare corresponding pixels in each framebuffer

and keep the one that has the closest nearest neighbor as shown in the depth buffer. Math-

ematically we calculate Fti as shown below:

Dtirπs � min
ti�r¤τ¤ti�r

TIMESHIFTpFττ , π, τ, tiq

τπ � argmin
ti�r¤τ¤ti�r

TIMESHIFTpFττ , π, τ, tiq

Ctirπs � Cτπ
τπ rπs

The pseudocode to perform this calculation can be found in Algorithm 4. However, in

implementation we would perform almost this exact computation on each pixel in parallel

with CUDA.

Now that we have described the process of creating Fti , we must now step back and

look at how this effects the process of doing the entire interpolation. Because we must

keep a framebuffer for each time slice of data, the amount of data stored on the GPU at a

time increases to now 2∆. As in the previous Op∆q algorithm, we must store ∆ buffers

Ft. However, we now must store an additional Op∆q buffers for Fττ .

To interpolate Gti we must calculate Fti�r . . .Fti�r. Of course Fti�r . . .Fti�r�ρ are

already being stored on the GPU but we must now generate Fti�r. To do this we must

have Ftiti . . .F
ti�2r
ti�2r. Again, we note that Ftiti . . .F

ti�2r�ρ
ti�2r�ρ were calculated for previous steps.

Thus, we can keep these saved in GPU memory and only generate Fti�2r
ti�2r by drawing a cone
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for each point in Sti�2r. We can now generate Fti�r with GPUCOMBINE. Therefore, each

point is only rendered as a cone on the GPU once in its drawing of Fττ and the GPU must

store 2∆ framebuffers.

3.5 Implementation and Experimentation

We now discuss the details of the implementation and testing of the above algorithms.

The algorithm was implemented in C++ and uses OpenGL for rendering on the GPU. All

experiments were run on the same hardware as was previously described.

Reducing communication costs. As explained in Section 2.4 and the algorithms de-

scribed above, we use NVIDIA’s CUDA architecture to implement much of the algorithm

and thus minimize the transfer of data between GPU and CPU memory. To handle large

data we again use the Templated Portable I/O Environment (TPIE) [5] library to implement

the recursive algorithm that performs this binning. Additionally, to avoid extra reading of

input points during rendering that fall outside the radius in time from our queries, we sort

each tile’s points in time using TPIE’s external-memory sorting algorithm. While this is

slightly overkill and could be done more efficiently (saving one disk read and write) with

a custom binning algorithm, this process was not the bottleneck in our algorithm and thus

was not addressed in the current version of the code.

Data sets. We ran our algorithms on both artificial as well as natural data sets. To compare

the efficiency of our algorithms, we ran the implementations on two data sets of random

points over a 10 year period. For each year we generated either 10 million or 50 million

random data points in a 40 km2 region. The data set with 10 million points per year took up

2.1 gigabytes on disk and the data set with 50 million points per year took up 11 gigabytes

on disk. To test that the algorithm worked as expected, we generated a set of data, random

in the xy plane, showing a 20 meter high wall moving across a plane over 110 year period.

For each year we generated 20,000 points, totaling to 41 megabytes on disk. Last, we
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tested our algorithm on data from the coast of North Carolina taken over nine years. Data

ranges from 100,000 points per year to nearly 3 million points per year and comes to a

total of just under 20 million input points. This data set took up 382 megabytes on disk.

Parameter choices. Within our experiments there are numerous parameters that can be

adjusted to shift our algorithm’s speed and quality trade-offs. Many of these parameters

are the same as the prevoiusly described experiments. For all experiments we set the

scaling parameter to s � 5, rq � sρB{2, B � 5, and rs � 5 meters. As before, the speed

of the algorithm is highly dependent on the number of triangles rendered. For these tests

the number of triangles rendered greatly increased both because of parameters chosen and

because we now have to render a hyperboloid and not just a cone. For these tests we set

k � 50 and rendered 5 triangle strips. Therefore each hyperboloid was composed of 500

triangles. Parameters were chosen to offer sufficiently high quality of output and test the

rigor of the implementation.

Quality. In testing on both the moving wall data set as well as the NC coastal data set,

we performed the NNI both during years there were data as well as between years of data.

For the moving wall data we used a radius of influence in time of 3 years and for the

NC coastal data set we used a radius of influence in time of 2 years. The interpolation

performed as expected and the implementation gives accurate results. In the case of the

wall data set we see it smoothly move across the plane, and for the NC coastal data set we

can watch a sand dune shift over time. A snapshot of the results can be seen in Figure 3.7.

Efficiency. We additionally compared the efficiency of the Op∆2q and Op∆q algorithms

by running them both on the 10 million and 50 million data sets. In both cases we only

ran over a coarse 200 by 200 grid at a 1 meter resolution. Interpolation was performed

for 8 years with a radius in time of 2 years. The results can be found in Table 3.1. As

can be seen in the table, the binning time took up between one thrid and one tenth the

total running time of the algorithms. For both data sets we see that the use of the extra

GPU memory makes the Op∆q algorithm take one quarter of the time of the Op∆2q algo-
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(a) (b)

FIGURE 3.7: Interpolated heights using 3D NNI. (a) Shows the wall moving across the
plane and (b) shows a sand dune on the NC coast. Both DEMs were interpolated between
slices of data.

Op∆2q Op∆q Op∆2q Op∆q
Points/Year (106) 10 50

Binning Time 2m 40s 3m 2s 15m 55s 16m 17s
GPUVORONOI (S) 18m 28s 4m 58s 2h 7m 33m 18s
Draw Query Cones 1.128s 1.02s 1.2s 0.98s
BUFFERANALYSIS 8m 36s 2m 11s 8m 23s 2m 21s

Write points 0.71s 0.01s 1.68s 1.63s
Total running time 29m 54s 10m 19s 2h 31m 52m 6s

Table 3.1: Algorithm speedup through saving more buffers in GPU memory

rithm for the GPUVORONOI and BUFFERANALYSIS steps. When summed with the other

computational costs we see that the Op∆q algorithm takes approximately one third of the

time of the Op∆2q algorithm. Therefore, given the available GPU memory, the Op∆q is

advantageous over the Op∆2q algorithm.
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