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ABSTRACT
As more researchers have become aware of and passionate about 
algorithmic fairness, there has been an explosion in papers laying 
out new metrics, suggesting algorithms to address issues, and call-
ing attention to issues in existing applications of machine learning. 
This research has greatly expanded our understanding of the con-
cerns and challenges in deploying machine learning, but there has 
been much less work in seeing how the rubber meets the road.

In this paper we provide a case-study on the application of fair-
ness in machine learning research to a production classification 
system, and offer new insights in how to measure and address algo-
rithmic fairness issues. We discuss open questions in implementing 
equality of opportunity and describe our fairness metric, condi-
tional equality, that takes into account distributional differences. 
Further, we provide a new approach to improve on the fairness met-
ric during model training and demonstrate its efficacy in improving 
performance for a real-world product.
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1 INTRODUCTION
By almost every measure, there has been an explosion in attention 
and research on machine learning fairness: there is a quickly grow-
ing amount of research on how to define, measure, and address 
machine learning fairness, and products are evaluated with these 
concerns in mind. Despite this significant attention, there has been 
much less published work detailing how fairness concerns are mea-
sured and addressed by product teams in industry. In this paper, we 
hope to shed light on the challenges in following these principles 
and learnings in an applied production setting, and to offer metrics 
and methods developed in the process.

We focus on a classification system where adverse actions are 
taken against examples predicted to be in the positive class. This is
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Figure 1:We observe a significant improvement in the gap in
false positive rate by training the model with absolute cor-
relation regularization.

similar to not giving a person a mortgage if a model predicts they
will default on it [21], using recidivism prediction for setting bail
[9], or removing comments on the web if they are predicted to be
abusive [13]. In all of these cases, each item is associated with a
user, and if the classifier makes a mistake and the adverse action is
taken against their example, that is bad for the user. More generally,
if examples from certain groups of users more often have adverse
actions taken against them, it could effect the health of the service.
As a result, improving group fairness [21] is both the right thing to
do and important to the health of the product.

We focus on equality of opportunity [21], in particular compar-
ing false positive rate (FPR) between groups. While the model being
calibrated [12] is an important mathematical property, it does not
reflect the experience of users and the implications of representa-
tion on the service. However, while [21] provides great intuition
and philosophical guidance, we find that in practice it leaves sig-
nificant wiggle room in how the metric is calculated based on how
the evaluation data is sampled or generated. Further, as shown
by Corbett-Davies et al. [11], distributional differences can result
in unintended side-effects and costs when implementing fairness
changes. We address these issues through a generalized form of
the metric, conditional equality, that makes these decisions more
explicit, and we describe how we navigated these challenges in our
use case. Figure 1 presents a summary of our results in an applied
production setting1.

Given this metric, we consider how to improve it under the
practical constraints of a product. For example, we are unable to
reliably observe the sensitive attribute at inference time, preventing
approaches like using different thresholds [28]. Further, as with
many engineering systems, simplicity and maintainability are core

1Due to the sensitive nature of these tests, we must omit the numerical values on the
y-axis of all plots. In all cases, plots that are juxtaposed keep the same range on the
y-axis such that results can be compared.
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requirements. We begin with exploring the use of adversarial train-
ing techniques [4, 33, 38], which have been shown to be effective.
However, as with many adversarial training approaches, we find
these are sometimes unstable and difficult to reliably train well. As
a result, we offer a new approach, absolute correlation regulariza-
tion, which, while not provably optimal at convergence, we find
empirically can stably improve our algorithmic fairness metrics.

Finally, we test these approaches on the production model to
improve the metrics for items from two sensitive groups. We find
that adversarial training and absolute correlation regularization
both improve these metrics significantly.

The open questions of how to design a practical algorithmic fair-
ness metric and how to improve that metric under the constraints
of a production system are crucial to putting academic learning
into practice in industry. While our approaches are tailored to the
application and constraints at hand, we believe they can offer guid-
ance to ML practitioners and call attention to gaps in the current
literature that researchers can work to address and practitioners
should be mindful of. We list below our contributions:

(1) Metrics:We demonstrate the challenge in “correctly” mea-
suring equality of opportunity, and describe our metric, con-
ditional equality, that makes practitioner decisions explicit
and takes into account varying difficulty of examples across
groups.

(2) Optimization: We offer a new regularization technique,
called absolute correlation regularization, to encourage equal-
ity of opportunity during training.

(3) Improvement: We demonstrate improvements to our algo-
rithmic fairness metrics. In particular, we find that traditional
modelling, such as through larger models, can improve algo-
rithmic fairness. Second, we find that absolute correlation
regularization stably and significantly improves algorithmic
fairness metrics.

2 BACKGROUND AND RELATEDWORK
We begin with some background material on algorithmic fairness
metrics and relevant related work.

Metrics. Many different metrics have been proposed to measure
machine learning fairness, particularly for binary classification.
One line of work called individual fairness rests on the view that
similar examples should receive similar predictions [15]; but this
leaves open the question of similarity. Another line of work focuses
on group fairness, where examples are grouped by a particular
sensitive attribute and statistics about the model predictions are ag-
gregated within the group and compared between groups. Multiple
group fairness metrics have been proposed. Demographic parity
[7] asserts that the average prediction for each group should be
equal:

P(ŷ = 1|s = 0) = P(ŷ = 1|s = 1), (1)

where the model prediction is ŷ and the sensitive attribute (group
identity) is given by s . One issue with this view is that different
groups could have very different labels y (often called different base
rates). Hardt et al. [21] address this by analyzing the accuracy and
asserting that the model should not mistake y = 0 examples for
y = 1 examples at a higher rate for one group than another, called

equality of opportunity:

P(ŷ = 0|s = 0,y = 0) = P(ŷ = 0|s = 1,y = 0) (2)

Empirically this means that we are comparing the false positive rate
(FPR) for examples from each group, which makes sense if a false
positives result in a high cost to the group. A symmetric statement
can be made for the false negative rate, and putting these together
is defined as equality of odds. A third popular group fairness metric
has been calibration [12]:

E[y |s = 0, ŷ = p] = E[y |s = 1, ŷ = p] ∀p ∈ [0, 1] (3)

Significant work has analyzed these metrics and their gaps. A num-
ber of results have shown that achieving all of them (or even pairs
of them) is only possible in limited cases [27, 34]. Other research
has considered expanding them to more complex combinations of
multiple sensitive attributes, which we refer to as intersectional
testing [22, 25]. Another different line of work has explored using
the language of causality to define fairness [26], but this has had
limited traction [19] due to the difficulty of knowing the causal
graph.

Modeling. With this wide variety of measures of fairness, an-
other line of research has explored how to address algorithmic
fairness issues in models. One line of work has built on adversarial
training. This approach began for domain adaptation [2, 6, 18] and
was quickly applied to fairness [17, 30, 37]. More recent work has
modified this to align with different ML fairness metrics [4, 33, 38].
Others have focused on constrained optimization [1, 20], or using a
variety of regularization techniques [3, 24, 36]. Our regularization
approach draws from all of these bodies of work.

Other approaches have been advocated for such as using different
thresholds for each group during binary classification [28], but
this is not feasible without observing the sensitive attribute at
inference. Another approach has been data augmentation [13], but
it is often unclear how to do this in applications with more complex,
arbitrary feature sets, e.g., loan default prediction over individuals
or recommender systems where domain adaptation is difficult.

Application: Much of the published work on addressing fair-
ness concerns focuses on public policy applications like recidi-
vism prediction [9, 31], predictive policing [32], and child services
[10]. These works explore some related practical difficulties, e.g.,
Chouldechova [9] discuss how metrics could be calculated after
conditioning on other covariates like prior convictions. Recently,
Holstein et al. [23] surveyed practitioners on the challenges to
improving fairness in industry.

3 APPLICATION SETTING
We begin with an overview of our application, and the properties of
it that are key to how we define and address any fairness concerns.
We focus on a binary classification model that predicts if each ex-
ample follows or breaks a pre-determined product policy. Examples
that break the policy have an adverse action taken directly against
them; examples that fall within policy have no action taken against
them. This is similar to abuse classification literature [13], the com-
mon loan-default prediction problem [21], or recidivism prediction
[9].
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Because of the quantity of data, reviewers cannot rate all ex-
amples on the service. Rather, we use human raters to score a
subsample of the examples. Human raters give a score y ∈ [0, 1]
and K raters score each example, producing an average ground
truth score yi =

∑
k
yi,k
K for example i . We can choose which exam-

ples to get rated, but each rating is relatively expensive such that we
can only have a small fraction of the data rated. This is particularly
exacerbated by the fact that only a small percentage of the examples
break policy and as such, random sampling of examples produces
relatively little data with high y.

Because most of the examples are unrated, we use a model f
to predict the ground truth score: f (xi ) = ŷi ≈ yi where x ∈ Rd

are features of the example. We take x to be a general feature
vector; in practice, it contains a wide range of features including
direct features as well as embedding and signals produced from
other models and systems. The model is trained as a regression
model with squared error: minf

∑
i (f (xi ) −yi )

2. At inference time,
adverse action is taken against all examples with prediction over
some threshold: f (xi ) = ŷi > τ .

For evaluating algorithmic fairness, we consider group fairness
[21] over groups of examples or users. Each example is associated
with a user, but features about the users are not reliably observed,
i.e., we consider the case where users are not associated with demo-
graphic information. Rather, a small number of users are willing to
share their demographics, which we can use during training and for
offline evaluation of algorithmic fairness metrics. We refer to the
group membership by feature s . Because most users do not share
their demographic information, we cannot use those features as
input to the model or in any way at inference time. Further, because
the number of examples with demographic information is relatively
small, a more expansive intersectional evaluation is not feasible
[22, 25].

Assumptions. We take the product policy as ground truth. Fur-
ther, we make the simplifying assumption that the human raters
provide an unbiased estimate of the ground truth score. At the
present, this is difficult to evaluate and further research is needed
on how to detect and evaluate rater bias. We offer an expanded
discussion of the assumptions and limitations of our analysis at the
end of the paper.

3.1 Baseline Model
We consider now how our baseline model performs, in particular
the FPR. This original model is a linear model over diverse feature
set x. We consider the FPR for two important sensitive groups,
which we will refer to as Group 1 and Group 2. In each case, we
compare the FPR to that of examples not from that respective user
group, i.e., Not-Group 1 and Not-Group 2. Due to the sensitive
nature of the measurements, we present all results in relativistic
terms. For example, the FPR Ratio is defined as:

FPR RatioGroup1 =
FPRGroup1

FPRNot−Group1
(4)

We present these measurements of the original system in Figure
3a and 4a. As observed in the plots, we find that for both Group
1 and Group 2 the FPR Ratio > 1, with FPR RatioGroup1 = 5.3×
and FPR RatioGroup2 = 2.18×. Both of these numbers indicate a

gap in the equality of opportunity and that examples from these
groups are more frequently incorrectly having adverse action taken
against them. Although hard to measure due to limited data, we
generally observe lower FNR for subgroups than the majority, and
because adverse actions are taken for predicted positives, we focus
on the FPR in the rest of our analysis.

4 ML FAIRNESS METRIC
While equality of opportunity [21] provides insight into measuring
cost to users of mistakes across groups, it leaves many open ques-
tions that in practice need to be addressed. In particular, how should
the data that the metric is calculated over be sampled? What if the
distribution of data differs? How do we address these differences?

4.1 Data Distribution
One immediate open question in the analysis and practical imple-
mentation is: how should the data be sampled? FPR and FNR are
only meaningful with respect to a given distribution of evaluation
data, and we find that different ways of generating that evalua-
tion data give significantly different results. Further, as pointed out
by Corbett-Davies et al. [11], examples from different groups may
have different distributions of risk, and directly applying equality
of opportunity over these different risks can raise its own issues.

The analysis above is based on a dataset built by sampling exam-
ples proportional to their usage, but ignore many other differences
in the data. Unsurprisingly, different groups of users are associated
with different types of examples, such as with different use cases
or target audiences. For example, in Figures 2a and 2b we find that
for one particular demographic property, the distribution of both
use cases of the examples as well as the target audiences are quite
different between the groups (considered over negative examples
from each group).

While the data can be stratified by many of these dimensions,
no principled way has been given for how or when to do so. Here,
we take inspiration from Corbett-Davies et al. [11], which suggests
the importance of addressing different risk distributions. However,
Corbett-Davies et al. [11] analyze risk through the model’s pre-
dictions rather than through some externally observable property.
Here, we deviate in that we observe a real-valued policy y aver-
aged over multiple human raters. As can be seen in Figure 2c, we
find that even within examples that would be considered negatives
(y < τ ), there is a notably different distribution between groups.
In particular, the sensitive subgroup has relatively more examples
close to the policy threshold τ , suggesting uncertainty by human
raters about how the examples align with the policy.

4.2 Distribution-Dependent Metrics
Understanding and addressing these differences in distribution is
critical to interpreting the results. Therefore, we begin with laying
out a formalization for conditional group fairness metrics and then
discuss the reasoning and implications of our choice of what to
condition on.

First we build on the work of Ritov et al. [35] and define a condi-
tional group fairness for our case:

Session 7: Measurement and Justice AIES’19, January 27–28, 2019, Honolulu, HI, USA

455



A B C D E F G

Use Case

0%

20%

40%

60%

P
e
rc

e
n
ta

g
e
 o

f 
E
x
a
m

p
le

s Group 1

Not Group 1

(a) Distribution of Use Cases

0 1 2 3 4 5

Target Audience

0%

20%

40%

60%

P
e
rc

e
n
ta

g
e
 o

f 
E
x
a
m

p
le

s Group 1

Not Group 1

(b) Distribution of Audience

0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

Average Reviewer Rating

0%

20%

40%

60%

P
e
rc

e
n
ta

g
e
 o

f 
E
x
a
m

p
le

s Group 1

Not Group 1

(c) Distribution of Ratings y

Figure 2: Different groups have different distribution of examples.

Definition 4.1. Conditional Equality of Opportunity is defined
for conditioning on feature A that takes values A:

P(ŷ ≥ τ |s = 1,y < τ ,A = a) (5)
= P(ŷ ≥ τ |s = 0,y < τ ,A = a) ∀a ∈ A

This definition does not give a concrete metric and leaves the
question of how to prioritize different a ∈ A. We can make this
precise by defining the conditional equality of opportunity gap:

Definition 4.2. Conditional equality of opportunity gap is defined
conditioning over feature A taking values in A, with each gap
weighted by a probability pa for a ∈ A:

EOGap =
∑
a
pa [P(ŷ ≥ τ |s = 1,y < τ ,A = a) (6)

− P(ŷ ≥ τ |s = 0,y < τ ,A = a)]

By setting pa = 1
|A |

, this metric equally weights each possible
value a ∈ A. This is generally a good prior absent a strong reason
to deviate. However, if one group has a skew in A then the uniform
prior may not represent the experience for a user in that group.
In this case, another option is to set pa = P(A = a |s = 0), which
aligns with importance weighting the data from the background
distribution to match the distribution of the focused subgroup2.

Crucially, with this definition we still must choose a feature A
on which to condition. Conditioning on a particular property, for
example the example use case, would have the implication that
error rates can be different across use cases, as long as they are the
same across groups for the same use case; but if different groups
prefer different use cases, then this metric would not necessarily
support those group preferences. As discussed above, we believe the
averaged human rating addresses a balance of desired properties for
our metric. The averaged human rating does not prioritize different
use cases, target audiences, etc., but rather we can interpret it as
giving us a way of observing the inherent difficulty (or risk as in
[11]) of an example. If humans are uncertain if an example meets a
policy, it is understandable for the model to make a mistake as well.
As we see in Figure 1, we observe that the FPR does increase with
the averaged human rater score, and while we still observe a gap in
FPR between the background data and the subgroup, it is partially
explained by the difference in the distribution of examples.

2When reporting ratios, we compute the ratio of average FPRs to align with this view
of data sampling.

Note, these proposals have significant connections to related
work. Most related is [35], which first proposed this generalized fair-
ness metric and included conditioning on arbitrary variables. The
similarity function in individual fairness can be thought of as condi-
tioning on different features, and that work grapples with many of
these same issues [14]. Chouldechova [9] and Corbett-Davies et al.
[11] both mention that metrics can be calculated condition on other
variables, and for recidivism prediction they condition on the num-
ber of prior convictions, but neither give a general framework for
when and how to condition. In examining fairness through a causal
lens, [26] explores the question of what is a “resolving variable,”
but ultimately this is left as a philosophical choice. Further, our
conditional equality metric can be viewed as a special case of the
intersectional fairness analysis [22, 25], which conditions on any
and all combination of covariates, but as we discussed, this requires
a significant amount of data. Ultimately, all of these approaches
leave the question of how to interpret conditioning on different
terms.

We hope that by forcing the definition of the fairness metric to
specify the conditioned variables, practitioners consider the dis-
tribution of their evaluation data, how it was sampled, and the
implications. Unfortunately, this still does not diminish the impor-
tance of considering how the dataset is sampled or generated, and
requires careful consideration by practitioners in determining this
procedure.

5 CORRELATION LOSS
Although previous work has laid out multiple techniques for train-
ing models with fairness metrics as part of the objective, these
approaches generally come with notable engineering concerns.
Here, we present a lightweight approach for improving the desired
fairness metrics.

One perspective on group fairness metrics is that the output dis-
tribution should match across groups [36], possibly after reweight-
ing or resampling the data [4, 33]. Zhang et al. [38] focus on an
adversary over predictions ŷ rather than an intermediate layer. One
way we could conceptualize this goal is to compare the distribu-
tions of ŷ between groups and encourage low mutual information
or KL divergence; Zafar et al. [36] use a simplification through the
covariance. We build on these views by minimizing the absolute
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correlation between ŷ and the group membership s:

min
f


∑

(xi ,yi )∈X

L(yi , f (xi ))
 + λ |CorrX− | (7)

where

CorrX− =
(
∑
xi ∈X− f (xi ) − µŷ )(

∑
si ∈X− si − µs )

σŷσs

µŷ =
1

|X− |

∑
xi ∈X−

f (xi ) µs =
1

|X− |

∑
si ∈X−

si

σ 2
ŷ =

1
|X− |

∑
xi ∈X−

(f (xi ) − µŷ )
2 σ 2

s =
1

|X− |

∑
si ∈X−

(si − µs )
2

Following [4, 33], we use X− = {xi ∈ X|yi < τ } in order to opti-
mize for equality of opportunity; this could be extended to other
reweighting or resampling schemes to address other metrics as in
[33]. In practice, we use X̃− ⊂ X−, which is a mini-batch of exam-
ples sampled from X−. This follows a similar pattern as previous
adversarial approaches in adding a penalty based on the distribu-
tion of the output, but unlike all of the adversarial approaches,
no training of an adversary is required, which we find to greatly
improve stability in practice. While minimizing this term does not
provably minimize the fairness metric, we find we get good results
in practice, as we will show below.

6 IMPROVEMENTS IN PRACTICE
In practice, we seek to improve both the general equality of oppor-
tunity metric as well as the conditional equality metric. All results
here build on the description of the application setting, metrics
and methods above. In particular, we explore the incremental pro-
cess by which we worked to improve this classifier, and how each
change effects the end metrics. Results are summarized in Figures
3 and 4 for Group 1 and Group 2 respectively, but we will walk
through each of the results below. Error bars are based on train-
ing the model 10 times and averaging results. We find there are a
number of trade-offs and directions for future work.

Model Capacity. As discussed previously, the original model was
a linear model, and we observe a significant gap in FPR between
the sensitive subgroup and the rest of the data for both Group 1 and
Group 2, as seen in Figures 3a and 4a. The first step we took was to
change from a linear classifier to a DNN with a single hidden layer.
Previous work [8] has suggested that theoretically model capacity
can be a driver of disparities in accuracy. As can be seen in Figure
3b, the move to DNN decreases the FPR for Group 1, as well as
decreasing the FPR gap from 2.62× to 1.44×. While this is good to
see, this does not always hold true: we observe the FPR increases for
Group 2 and Not-Group 2 users3; the FPR gap decreases from 1.76×
to 1.25×. As such, while increasing model capacity may help in
some cases, it does not necessarily improve accuracy everywhere.

3Note, Not-Group 1 and Not-Group 2 are different in that they are based on different
methods for getting demographic data s .

Adversarial training. Building on the DNN model, we next con-
sidered how well adversarial training can improve the FPR gap.
We follow an approach similar to Beutel et al. [4] of training an
additional head taking as an input the last hidden layer of the model
and trying to predict the sensitive attribute s while the model tries
to learn a representation that is independent of s ; we use only data
for which y < τ , as we are concerned with the FPR. As we see in
Figure 3c, this significantly decreases the FPR gap from 1.44× to
1.04× and simultaneously decreases the FPR for Group 1, despite
that not being an explicit objective.

Correlation Loss. As mentioned previously, adversarial training
has been well studied and we see has strong performance, but
from an engineering perspective is challenging due to its instabil-
ity during training. As a result, we pursued absolute correlation
regularization to stabilize training. We observe in Figure 3d that
using absolute correlation regularization keeps the FPR gap approx-
imately the same (1.05×). The practical benefits of keeping a low
FPR gap while improving stability is highly valuable in practice.

Transfer across Groups. One idea that has been debated in the
literature [33] is if and when there is transfer learning of fairness
across groups. We consider here how the application of absolute
correlation regularization to Group 1 effects the FPR gap for Group
2 users. In Figure 4c we observe a very slight improvement in the
FPR gap, bringing it down from 1.37× to 1.31×.

Improving for Multiple Groups. Finally, we look at if we can si-
multaneously improve the FPR gap for both Group 1 and Group
2 users simultaneously. To do this, we add two different absolute
correlation regularization terms to the DNN training, one for each
group. As we see in Figure 4d, we are able to improve the FPR
gap for Group 2 to 1.11×. Unfortunately, we do not find that this
decreases the FPR for Group 2; we believe focusing on making the
model more inclusive by improving the accuracy not just decreasing
the gap is an important step for future work [5, 8].

7 FUTURE DIRECTIONS
We have focused on how to improve an individual model that di-
rectly effects the user experience, but by no means does every use of
machine learning fit into these settings. To expand the applicability,
we believe there are a number of areas that deserve more research
attention.

Human raters: This work, like most of the algorithmic fairness
literature, assumes that the labels are unbiased. We believe more
attention is needed to understand if and when there is bias in crowd-
sourced ratings, and how to remove it.

Binary actions: We only consider the case where we are taking
binary actions directly against the examples (at the known thresh-
old). When the prediction is treated as a continuous score or used
in conjunction with other signals, it becomes harder to evaluate the
effect on the user experience [16] and further research is needed in
this direction.

Observed Examples: We evaluate our system against the exam-
ples currently in the system. However, that distribution is of course
affected by the system’s previous performance. Use cases that were
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Figure 3: Improvements for Group 1 users.
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Figure 4: Improvements for Group 2 users.

previously not well supported may be underrepresented in our
sample. Unfortunately, we do not know of a way to infer the dis-
tribution of examples that would exist under a different previous
system. As a result, for the time being, we focus on evaluating and
improving metrics for the current state, with the belief that it will
improve the performance of the system for the sensitive subgroups
and we can continue to evaluate the performance as the subgroup
evolves. Further research, along the lines of [29], would be valuable
to better understand the long term evolution of the system.

8 DISCUSSION
In this work we have offered details on how applying algorithmic
fairness principles to a production classifier fares. In particular,
we have explored how equality of opportunity depends on how
the data is sampled, and how different groups can have notably
different distributions of data. To address issues with these distri-
butional differences, we offered a general evaluation approach that
takes into account example difficulty. Further, we have offered a
new mechanism, absolute correlation regularization, for improving
algorithmic fairness metrics that we find to be more stable than ad-
versarial training. We demonstrate the ability of these approaches
to improve the FPR gap for two different groups in a production clas-
sifier and offer analysis of how the model performance is effected
by these different training procedures.
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