
TerraNNI: Natural Neighbor Interpolation on a 3D Grid Using a
GPU∗

Alex Beutel
School of Computer Science
Carnegie Mellon University

abeutel@cs.cmu.edu

Thomas Mølhave, Pankaj K. Agarwal
Department of Computer Science

Duke University
{thomasm,pankaj}@cs.duke.edu

Arnold P. Boedihardjo, James A. Shine
Topographic Engineering Center
U.S. Army Corps of Engineers

{Arnold.p.boedihardjo,James.a.shine}@usace.army.mil

ABSTRACT
With modern focus on LiDAR technology the amount of topo-
graphic data, in the form of massive point clouds, has increased
dramatically. Furthermore, due to the popularity of LiDAR, re-
peated surveys of the same areas are becoming more common.
This trend will only increase as topographic changes prompt sur-
veys over already scanned terrain, in which case we obtain large
spatio-temporal data sets.

In dynamic terrains, such as coastal regions, such spatio-temporal
data can offer interesting insight into how the terrain changes over
time. An initial step in the analysis of such data is to create a digital
elevation model representing the terrain over time. In the case of
spatio-temporal data sets those models often represent elevation on
a 3D volumetric grid. This involves interpolating the elevation of
LiDAR points on these grid points. In this paper we show how to
efficiently perform natural neighbor interpolation over a 3D volu-
metric grid. Using a graphics processing unit (GPU), we describe
different algorithms to attain speed and GPU-memory trade-offs.
Our algorithm extends to higher dimensions. Our experimental re-
sults demonstrate that the algorithm is efficient and scalable.

Categories and Subject Descriptors: D.2 [Software]: Software
Engineering; F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; H.2.8 [Database Manage-
ment]: Database Applications—Data Mining, Image Databases,
Spatial Databases and GIS

General Terms: Performance, Algorithms

Keywords: LIDAR, Massive data, GIS, Natural Neighbor Interpo-
lation
∗This work is supported by NSF under grants CNS-05-40347, IIS-07-
13498, CCF-09-40671, and CCF-1012254, by ARO grants W911NF-07- 1-
0376 and W911NF-08-1-0452, by U.S. Army ERDC-TEC grant W9132V-
11-C-0003, by NIH grant 1P50-GM-08183-01, and by a grant from the
U.S.-Israel Binational Science Foundation..

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11 November 1-4, 2011. Chicago, IL, USA
Copyright 2011 ACM 978-1-4503-1031-4/11/11 ...$10.00.

1 Introduction
Modern sensing and mapping technologies such as airborne LiDAR
technology can rapidly map the earth’s surface at 15-20cm horizon-
tal resolution. Since LiDAR provides a relatively simple and cheap
way of surveying large terrains, some areas are (or will be) sur-
veyed multiple times, yielding large spatio-temporal data sets. For
example, the coastal region of North Carolina has been mapped
every 1-2 years since the mid 1990’s[1]. Figure 1 shows a spatio-
temporal model of a portion of this region constructed from the data
set. Such data sets provide tremendous opportunities for a wide
range of commercial, scientific, and military applications. For in-
stance, unmanned aerial vehicles can survey an area over a certain
time period and the resulting spatio-temporal topographic data can
be used to detect the location of new buildings, machinery, or veg-
etation. On a larger scale, they can be used to offer interesting in-
sights into understanding terrain dynamics. For example, there has
been much interest on studying the movement of sand dunes and
erosion at the North Carolina coast [18]. It is essential for many
applications to exploit the high-resolution data sets since small fea-
tures may have a large impact on the output. For instance, it is vital
that dikes and other features are present in data sets used for hydro-
logical modeling, but these features are often relatively small and
unlikely to disappear if the resolution is low [5, 19].

Capitalizing on the opportunities presented by high-resolution
data sets and transforming massive amount of spatio-temporal to-
pographic data into useful information requires that several algo-
rithmic challenges be addressed. To begin with, the scattered point
set S generated by LiDAR cannot be used directly by many GIS al-
gorithms. They instead operate on a digital elevation model (DEM).
Because of its simplicity and efficiency, the most widely used DEM
is a 2D uniform grid in which an elevation value is stored at each
cell. For spatio-temporal data, this translates into a 3D grid with
time representing the third dimension. One has to extend the ele-
vation measured by LiDAR at the points of S via interpolation to
a uniform grid Q ⊂ R3 of the desired resolution; the interpolation
is performed in both time and space. We note that the need to in-
terpolate a spatio-temporal data set on a uniform grid arises in a
variety of applications. For example, one may want to interpolate
data generated by a sensor network deployed over a wide area [9].

There is extensive work on statistical modeling of spatio-temporal
data in many disciplines, including geostatistics, environmental sci-
ences, GIS, atmospheric science, and biomedical engineering. It

(a) Interpolated DEM in 2002 (b) Interpolated DEM in 2005 (c) Aerial photo of the dune

Figure 1. Jockey’s Ridge State Park sand dune in Nags Head, NC, USA.

is beyond the scope of this paper to discuss these methods here.
We refer to [12, 14, 24] for reviews of many such results. In the
context of GIS, interpolation methods based on kriging, inverse
distance weighting, shape functions, random Markov fields, and
splines have been proposed; see [17, 22, 13, 15] and references
therein. Although sophisticated methods such as kriging and RST
(spline based method [17]) produce high quality output, especially
when data is sparse, they are computationally expensive and not
scalable. On the other hand, simple methods such as constructing
triangulation on input points in R3 [13] and linearly interpolating
the elevation on grid points, though efficient, generate artifacts in
the output and are not suitable for many GIS applications.

In this paper we use the well-known natural neighbor interpo-
lation (NNI) strategy [23]. Given a finite set S of points in Rd, a
height function h : S → R can be extended to the entire Rd using
natural neighbor interpolation. In particular, for a point q ∈ Rd,

h(q) =
∑
p∈S

wp(q)h(p), (1)

where wp(q) ∈ [0, 1] is the fractional volume of VorS∪{q}(q) that
belongs to VorS (p) (see Figure 2 for a 2D example), i.e.,

wp(q) =
Vol(VorS (p) ∩ VorS∪{q}(q))

Vol(VorS∪{q}(q))
, (2)

where VorA(z) denotes the Voronoi cell of the point z ∈ A in the
Voronoi diagram of A. See Section 3 for a formal definition of the
Voronoi diagram. NNI produces a smoother surface than linear in-
terpolation and readily extends to spatio-temporal data. However,
computing NNI on grids in 3D is challenging and expensive. First,
the size of the Voronoi diagram in 3D can be quadratic in the worst
case even for the Euclidean metric [6]. As mentioned below, for
spatio-temporal data, we may have to compute the Voronoi dia-
gram under more general metrics. Even if the size of the Voronoi
diagram is near linear for realistic data sets [3], computing it is still
expensive, especially on large data sets that do not fit in main mem-
ory. Since S can not be assumed to be in general position, robust
implementations must take great care to handle cases such as point
duplicates and groups of multiple points on the same plane/sphere;
the existing implementations of Voronoi diagram construction such
as Qhull are slow on degenerate inputs. Furthermore, performing
NNI involves computing the intersection of two polyhedra and the
volume of this intersection. Hemsley [10] has implemented NNI
in 3D under the Euclidean metric, but the implementation is not
scalable; see Section 5 for more details. We are unaware of any ro-
bust implementation of NNI for points in R3 that can handle large
data sets. Because of these challenges, we propose to discretize the
Voronoi diagram and compute NNI approximately; the approxima-
tion error can be controlled by choosing discretization parameters

appropriately.
To attain significant speed-up in the NNI computation, we ex-

ploit the graphics processing units (GPUs) available on modern
PCs. Although originally designed for quickly rendering 3D ge-
ometric scenes on an image plane (screen) and extensively used in
video games, they can be regarded as massively parallel vector pro-
cessors suitable for general purpose computing. Known as general
purpose GPUs (GPGPUs), their tremendous computational power
and memory bandwidth make them attractive for applications far
beyond the original goal of rendering complex 3D scenes. As GPUs
have become more flexible and programmable (e.g. NVIDIA’s
CUDA [20] library) they have been used for a wide range of ap-
plications, e.g., geometric computing, robotic collision detection,
database systems, fluid dynamics, and solving sparse linear sys-
tems; see [21] for a recent survey. In the context of grid DEM
construction, Fan et al. [8] and Beutel et al. [5] have described a
GPU based algorithm for (NNI) in 2D.
Our contributions. Let S ⊆ R3 be a set of LiDAR points on which
elevation is measured, and let Q be a 3D grid of points at which we
want to compute the elevation. We present a simple yet very fast
GPU based algorithm, called TerraNNI for performing a variant of
NNI, which is more suitable for our application, on the points of
Q. Our algorithm is a generalization of the algorithm described
in [5], but several new ideas are needed in 3D. LiDAR scanners
provide dense point cloud of elevation data at most locations, but
there are gaps. In space, these gaps usually appear at large bodies
of water or human-made objects that have been removed from the
point cloud in a preprocessing step. In time, the gaps appear when
surveys fail to cover exactly the same region as previous surveys.
When these gaps are large (i.e., there is a large region in space and
time with no data) we wish to label the corresponding gap cells in
the volumetric grid with nodata instead of interpolating elevation
based on points that are very far away. We extend the notion of the
region of influence of an input point as introduced in [5], to include
time. We compute the elevation at a grid point using only those
input points that lie within its region of influence. Our algorithm
allows the “radius” of region of influence to be arbitrarily large. If
it is set sufficiently large then the algorithm computes the standard
NNI.

Since we are working with spatio-temporal data, Euclidean dis-
tance may not necessarily be the appropriate function to measure
the distance between two points. We therefore assume that we have
a metric d(·, ·) and compute Voronoi diagrams under this metric.
While computing Voronoi diagrams on the CPU for general met-
rics is quite hard, we show that it is relatively straightforward on a
GPU. We also show how the computation of Voronoi diagrams can
be optimized for “weighted” Euclidean distance.

The main difficulty in performing NNI on the points of the 3D

q

Figure 2. Natural neighbor interpolation for a point set S and query point
q in R2. The shaded cell is VorS∪{q}(q), and each color denotes the area
stolen from each cell of Vor(S).

grid Q is that GPUs support only two-dimensional buffers, so un-
like in [5], we cannot perform NNI on all grid points in one pass.
Instead, we handle one 2D slice of Q at a time. This involves pro-
cessing each input point several times. We present three algorithms,
which provide trade offs between the number of times each point
is processed and the space (on the GPU) used by the algorithm.
The first algorithm stores only one copy of the GPU frame buffer
but processes each point O(r2) times, where r is the “radius” of in-
fluence along the time axis, see Section 3 for a precise definition
(here we assume that the temporal resolution of Q is 1). The sec-
ond algorithm reduces the number of passes over the input points
to O(r) by storing r copies of the GPU frame buffer. Finally, if the
input data is time-series data, i.e., S = Σ1, . . . ,ΣT for |T | � |S |,
where all points in Σi have the same time coordinate, and if the
distance d(·, ·) is a weighted Euclidean metric (see Section 3 for
the definition), we describe an algorithm that makes only one pass
through the input points, under the assumption that some primitive
operations on the GPU buffers can be performed; see Section 4 for
details. The algorithm extends to certain other metrics as well, but
we omit this extension from this version of the paper. We refer to
Table 1 in Section 4 for an overview of the relative performance of
our algorithms.

Our experimental results demonstrate that TerraNNI is both scal-
able and efficient. It interpolates over 450 million input points span-
ning 2 years (8.8GB on disk) in 26 minutes. We also test the mem-
ory trade-offs on a smaller data set consisting of about 20 million
data points spanning 11 years. The simplest algorithm processing
each point O(r2) times is 2-2.2 times slower than the algorithm that
only processes each point O(r) times at a cost of using r frame
buffers. The latter took six and a half minutes to interpolate at
48 million points. We also tested the Interpolate3d [10] package
which is an implementation of NNI on the CPU. Interpolate3d was
unable to handle the full 20 million point data set with the 8GB
of memory available in the machine, but was able to interpolate a
10 million point subset in about an hour and a half. We also com-
pared TerraNNI against Qhull [4] and Cgal [2] which both contain
state of the art Delaunay triangulation implementations, which are
equivalent to the first step of performing NNI. It took Cgal eleven
minutes to create the Delaunay triangulation of the 20 million input
points, but it crashed when attempting to triangulate the larger 450
million point data set. Compare the eleven minutes for the smaller

data set with the six and a half minute used by TerraNNI to compute
the (discretized) Voronoi diagram and perform the interpolation at
48 million points. Out of those six and a half minutes, only 50 sec-
onds where spent on loading the data and generating the Voronoi
diagram. We refer to Section 5 for details.

Finally, we apply the grid DEM constructed by TerraNNI to an-
alyze the terrain dynamics. In particular, we interpolate a multi-
temporal LiDAR of Nags Head, NC and study the movements of
sand dunes in the coastal region.

Overview of the paper. This paper is organized as follows. Sec-
tion 2 gives a short introduction to the fundamentals of the GPU
model of computation, and Section 3 presents an algorithm for
computing Voronoi diagrams in 3D. Section 4 presents the differ-
ent algorithms for interpolating on volumetric 3D grids, and Sec-
tion 5 compares the results from these different algorithms. Finally,
we present the application on the NC coast data in Section 6 and
present a short conclusion in Section 7.

2 GPU Model of Computation
In this section we give a brief overview of the parts of the model of
computation offered by GPUs that are relevant for our paper.

The graphics pipeline. The graphics pipeline is responsible for
drawing 3D scenes, composed of many objects, onto a 2D image
plane of pixels as seen from a viewpoint o. Because of their sim-
plicity and flexibility, these objects are almost always triangles. For
each pixel π = (x, y) where x, y is a global coordinate, the GPU
finds all objects Ω = {ω1, ω2, . . . ωn} which ray ~oπ intersects. To
store the information about the scene, the GPU keeps two dimen-
sional arrays of pixels called buffers:

• The depth buffer D stores the distance to the nearest ob-
ject from o for each pixel π. Given that p j is the point of
intersection for ray ~oπ and object ω j, the GPU calculates
D[π] = min1≤ j≤n ‖op j‖.

• The color buffer C stores the color of the scene as viewed
from o. If for each object ω j ∈ Ω we have a color χ j, we
define a blending function that computes the color at each
pixel: C[π] =

∑
1≤ j≤n α jχ j, where α j ∈ [0, 1] is the blending

parameter of ω j. Typically, α j is based on depth buffer so
that C stores the color of the foremost object.

During graphical computations, the color and depth buffers re-
side in memory on the graphics card. Objects can be drawn onto
these buffers with specific APIs such as OpenGL or Microsoft’s Di-
rectX. In our computations, there are cases where we will want to
save and reuse buffers. Through the use of OpenGL-specific APIs,
we can switch the buffer being used for drawing between multi-
ple buffers stored in GPU memory. However, in some cases we
will want to use the values in these buffers for computation on the
CPU. For this, we have to read the buffer back to the computer’s
main memory. Unfortunately, since this involves transferring large
amounts of data over the relatively slow bus systems, read backs
are very slow. For using the GPUs parallel processing capabili-
ties, popular graphics card manufacturer NVIDIA has created the
CUDA parallel computing architecture [20], which facilitates gen-
eral purpose parallel programming on the GPU.

3 Pixelized Voronoi Diagram
Let S = {p1, . . . , pn} be a set of points in R3. We view R3 to be
xyt-space — x,y being spatial dimension and t being the time axis;

(a) (b) (c)

Figure 3. Pixelized Voronoi Diagram where d(·, ·) is the Euclidean metric. (a) PVor(S) for a set of eight points; (b,c) PVorS (3), shown as a slice of B from
(a).

each point p = (xp, yp, tp) is located in a 2-dimensional region, with
(xp, yp) as its spatial coordinates, and has a time value tp associated
with it. We thus view S as spatio-temporal data. For convenience,
we set pi = (xi, yi, ti). For a point p ∈ R3, we use p∗ = (xp, yp) to
denote its projection on the xy-plane. We also assume that we have
a metric d(·, ·). Since we are dealing with spatio-temporal data, the
Euclidean metric may not necessarily be the appropriate function
to measure the distance between two points. For example, we may
want to scale the t-axis differently from the x, y-axis and define

d(p, q) =
(
(xp − xq)2 + (yp − yq)2 + ω2(tp − tq)2

)1/2
(3)

for some parameterω ∈ R. We refer to this function as the weighted
Euclidian metric.

Pixelized Voronoi diagram. For a point pi ∈ S , we define its
Voronoi cell VorS (pi) to be

VorS (pi) = {z ∈ R3 | d(z, pi) ≤ d(z, p j) 1 ≤ j ≤ n}.

Vor(S) is the subdivision of R3 induced by the Voronoi cells of
points in S .

Let B be an axis-aligned box in R3 whose projection on the xy-
plane is a square. We are interested in computing a discretized
version of Vor(S) inside B, defined below. We discretize B into a
Ns × Ns × Nt uniform 3D grid of voxels; Ns is the spatial resolution
of the grid and Nt is its temporal resolution. Each voxel is a (tiny)
box and its volume is µ = Vol(B)/(N2

s Nt). We use υ̂ to denote the
center-point of voxel υ and index the voxels as (i, j, t) for 0 ≤ i, j <
Ns and 0 ≤ t < Nt. With a slight abuse of notation, we will use B to
denote this 3D grid of voxels. For a voxel υ ∈ B, let ϕ(υ, S) denote
the point of S that is nearest to υ̂. We discretize Vor(S) ∩ B by
assuming that the entire voxel υ lies in the Voronoi cell of ϕ(υ, S).
For a point pi ∈ S , we define its pixelized Voronoi cell as

PVorS (pi) = {υ | ϕ(v, s) = pi}.

The quantity µ|PVorS (pi)| approximates the volume of VorS (pi).
This approximation improves as we increase the resolution, i.e.,
limNs ,Nt→∞ µ|PVorS (pi)| = Vol(VorS (pi)∩B). PVor(S) is the subdi-
vision of B induced by PVorS (pi) for 1 ≤ i ≤ n; see Figure 3(a).

As in [5], we want to limit the region of influence R(pi) of each
point in S , i.e., the distance of pi becomes infinity for points out-
side its region of influence. We assume R(pi) to be a “cylinder” in
xyt-space of radius r and height 2r. Namely, a point z ∈ R(pi) if
d(z∗, p∗i) ≤ r and |tz − ti| ≤ r.1

1One could have defined the region of influence to be the sphere of radius r
centered at pi, but the cylindrical region is more meaningful in our applica-
tion.

We now define the truncated pixelized Voronoi cell of pi as

Vor�S (pi) = {υ | ϕ(υ, S) = pi ∧ υ̂ ∈ R(pi)}.

Vor�(S) is the subdivision of B induced by Vor�S (pi), i ≤ i ≤ n.
Note that a voxel not lying in R(pi) for any pi ∈ S does not belong
to the truncated Voronoi cell of any point of S .

Computing pixelized Voronoi diagram. We now describe a GPU
based algorithm for computing Vor�(S), which is a generalization
of the algorithm described in [5] and uses the latter as a subroutine.
For 1 ≤ i ≤ n, let fi : R3 → R be the function that measures the
distance between pi and a point z in R3, i.e., fi(z) = d(z, pi). The
lower envelope f of { f1, . . . , fn} is defined as

f (z) = min
1≤i≤n

fi(z),

which is the distance from z to its nearest neighbor in S . Vor(S) is
the projection of the graph of f onto the xyt-space. Following the
argument in [5, 11], the problem of computing PVor(S), Vor�(S)
can be formulated as rendering a 4D scene on a 3D hyperplane.
However GPUs are able to render only 3D scenes on a 2D plane,
and they have only 2D buffers. We therefore render each 2D slice
of B (parallel to the xy-plane) separately, as described below.

Fix a time slice τ of B, i.e., the set of voxels with time index τ.
Let Πτ be the horizontal plane passing through the center points of
the voxels of this slice. Bτ = B ∩ Πτ is a square with an Ns × Ns

2D uniform grid induced on it. Each pixel υτ of this 2D grid, the
intersection of a voxel υ with Πτ, is a square; υ̂ is the center point
of both υ and υτ. For pi ∈ S , we can thus define its Voronoi cell
slice on Πτ as

PVorS (pi, τ) = {υτ ∈ Bτ | υ ∈ PVorS (pi)},

PVorS (τ) is the subdivision ofBτ induced by these cell slices, which
can be viewed as a discretization of the 2D slice of Vor(S) ∩ Πt

inside B; see Figure 3(a,b). Similarly we can define Vor�S (pi, τ)
and Vor�S (τ).

We now define a series of functions f τi : R2 → R, for 1 ≤ i ≤ n,
as

f τi (x, y) = fi(x, y, τ) = d((x, y, τ), pi).

Let f τ(x, y) = mini f τi (x, y) be their lower envelope. A pixel υτ ∈
PVorS (pi, τ) if and only if the function f τi,υ̂ appears on the lower
envelope at the center point of υτ, i.e., f τi (υτ) = f τ(υτ). The graph
of f τi is a 2-dimensional surface γi. For example, if d(·, ·) is the
Euclidean distance then

f τi (x, y) =
(
(x − xi)2 + (y − yi)2 + (τ − ti)2

)1/2

γi

h̄i

hi

p∗i

Figure 5. In the case of the Euclidian metric, γi can be simplified using
the lifting transform.

and its graph is one sheet of a hyperboloid of revolution of two
sheets, see Figure 4(a,b). As in [5], PVorS (τ) can be computed
by viewing Bτ as the 2D image plane and rendering the surfaces
γ1, . . . , γn with (0, 0,−∞) as the viewpoint. We set the color of γi

to i, then the color buffer C[π] stores the index of the point ϕ(π, S),
i.e., the point whose Voronoi cell contains π; see Figure 3(c). In
order to compute Vor�S (τ) we need to truncate γi within R(pi), the
region of influence of pi, before rendering it. By repeating this for
all slices 0 ≤ t < Nt, we can compute Vor�(S). For a fixed τ, let
S τ = {p ∈ S | τ − r ≤ tp ≤ τ + r}. Then Vor�(S , τ) = Vor�(S τ, τ).
So while computing Vor�(S , τ), we only render γi’s for pi ∈ S τ.

Triangulating γi. As mentioned in Section 2, the GPU can ren-
der only linear objects. Therefore we need to approximate each γi

(or its truncated version) by a triangulated surface, γ�i . Here we
describe the triangulation procedure for the case when d(·, ·) is a
convex function. For technical reasons, we also assume that d(·, ·)
does not have a cross term between t and x, y, i.e., we can sep-
arate spatial and temporal terms. This implies that d(·, ·) can be
restricted to define the distance between two points in R2. We as-
sume that γi is such that |ti − τ| ≤ r. Next, we clip γi within points
π ∈ R2 s.t. d(π, p∗i) ≤ r. By our assumption that there are no cross
terms, all points on the boundary of the clipped surface γi have the
same z-value. Let γi also denote the resulting surface patch. Next,
we choose a parameter m and compute m level-set curves (contour
lines) at regular height intervals on γi, i.e., intersect γi with m hor-
izontal planes (e.g. dashed circles in Figure 4(c). Each curve is
a convex closed curve, which we approximate by a convex k-gon,
for some parameter k, by choosing k points on the curve. We then
create triangles between adjacent k-gons using 2k triangles. The
resulting triangulated surface γ�i , composed of 2km triangles, ap-
proximates γi. See Figure 4(c). the approximation error can be
controlled by choosing the values of m and k carefully.

The case of Euclidean distance. Finally, we show that if d(·, ·) is
a weighted Euclidean distance function as defined in (3), there is
a much better way of rendering γi using the so-called lifting trans-
form [6], which uses fewer triangles and induces no error in the
distance function (though the region of influence is still approxi-
mated)

For 1 ≤ i ≤ n, define gτi : R2 → R as

gτi (x, y) = f τi (x, y)2 − x2 − y2

= −2xxi − 2yyi + x2
i + y2

i + ω2(ti − τ)2.

Let

gτ(x, y) = min
i

gτi (x, y).

The crucial observation is that

gτi (x, y) ≤ gτj(x, y)⇔ f τi (x, y) ≤ f τj (x, y),

which implies that the xy-projection of the lower envelope of f
and g are identical, therefore PVors(τ) is also the projection of the
graph of gτ(x, y). We therefore render the graphs of gτi instead of f 2

i .
The graph hi of gτi is a 2-dimensional plane, so it can be rendered
directly. In order to compute Vor�(S), we need to truncate hi within
the region of influence of hi. We first assume that |ti − τ| ≤ r. Next,
let h̄i be the portion of hi clipped within the region of influence of
pi,

h̄i = {(x, y, z) ∈ hi | (x − xi)2 + (y − yi)2 ≤ r2},

which is an ellipse in 3D. We wish to render h̄1, . . . , h̄n. We approx-
imate h̄i to a convex k-gon h�i as follows. Let σ be a regular k-gon
in R2. We set σi = σ + p∗i . h�i is obtained by lifting σi to hi, i.e.,

h�i = {(x, y, gτi (x, y)) | (x, y) ∈ σi}.

For each vertex v of σi there is a vertex (v, gτi) in h�i . We triangu-
late h�i into k triangles in a standard manner. Note that h�i encodes
the function gτi exactly; it only approximates the region of influ-
ence.

The GVor algorithm. Let GVor(S , τ) denote the algorithm, de-
scribed in this section, to compute the slice of the truncated pixe-
lated Voronoi diagram at time τ, i.e., Vor�(S , τ) which is the same
as Vor�(S τ, τ). The output of this algorithm is the combination of
color bufferC and depth bufferD, which together describe Vor�(S , τ).
However, we apply the following twist: we set the color of each
triangle of γ�i to h(pi) (instead of i). Thus C[π] stores h(pi) for
all pixels π ∈ Vor�S (pi, τ). We define the frame buffer F to be
(C,D) and we can think of F as the result of running GVor, i.e.,
F = GVor(S , τ). Ignoring initialization costs, the complexity of
GVor(S , τ) is that of rendering γ�i (or h�i) for each pi within the
region of influence.

4 Natural Neighbor Interpolation on Grids
In this section we describe our algorithms for answering natural-
neighbor interpolation queries on a M × M × T grid Q of points
in R3 using truncated pixelized Voronoi diagrams. We assume that
Q has origin (0, 0, 0) and resolution 1 in each dimension, i.e., Q =

{0, . . . ,M − 1}2 × {0, . . . ,T − 1}. Any 3D grid can be mapped to
Q using an affine transformation and using the weighted Euclidian
metric to preserve the structure of the Voronoi diagram.

Since the region of influence has radius r and height 2r, we de-
fine B = Q + [−2r − 1/2, 2r + 1/2]3 — large enough to contain all
the points of S that are of interest, and we can assume that S ⊂ B.
For simplicity we assume that r ∈ N. Let s ∈ N be a parameter. We
discretize B into a sM × sM × T 3D grid of voxels, each voxel is
a box of size 1

s ×
1
s and height 1, and its volume is µ = 1

s2 . By our
definition of B and the voxels, each grid point ofQ lies at the center
of an s× s×1 array of voxels of B, i.e., the temporal resolution of B
and Q is the same, but the spatial resolution of B is s times that of
Q. One can choose the temporal resolution of B higher than that of
Q but it is not important in our applications and choosing the two
to be the same simplifies the description of the algorithm.

Recall the definition of a the natural neighbor interpolation h :
S → R3 given in Equations (1) and (2). In our discretized setting
we modify h as follows:

h(q) =

∑
p∈S |Vor�S (p) ∩ Vor�S∪{q}(q)|h(p)

|Vor�S∪{q}(q)|
=

N(q)
D(q)

. (4)

P0

P1

P2

(a) (b) (c)

Figure 4. (a,b) Lower envelope of 8 points that were used for PVor(S) in Figure 3(b,c). (a) shows the hyperboloids from a side view; (b) the outer cells
of the Voronoi diagram are infinite, but in this figure their sizes are limited because the hyperboloids are of a limited height. (c) The triangulation of γi
into γ�i using two triangle strips (m = 2).

Algorithm # Copies Triangles rendered per p ∈ S
of passes of F General Weighted Euclidean

r2 1 O(r2kmn) O(r2n)
r 2r + 1 O(rkmn) O(rn)
1 2(2r + 1) O(kmn) O(n)

Table 1. Performance of the three algorithms. |S | = n, each copy of F
requires storing a color buffer and associated depth buffer on the GPU.

D(q) is simply the number of voxels in Vor�S∪{q}(q). N(q) is the
sum of the heights represented by each voxel in Vor�(S) from the
Voronoi cell of q.

We observe that the region of influence along the time axis im-
plies that only voxels υ for which |tυ − tq| ≤ r are relevant for N(q)
and D(q). Thus, we only need to consider 2r + 1 slices of B corre-
sponding to Πtq−r, . . . ,Πtq+r. Applying this to (4) we get

D(q) =

tq+r∑
τ=tq−r

|Vor�S∪{q}(q, τ)| =

tq+r∑
τ=tq−r

D(q, τ) (5)

N(q) =

tq+r∑
τ=tq−r

∑
π∈Vor�S∪{q}(q,τ)

h(ϕ(π, S)) =

tq+r∑
τ=tq−r

N(q, τ), (6)

where

N(q, τ) =
∑

π∈Vor�S∪{q}(q,τ)

h(ϕ(π, S)),

D(q, τ) = |Vor�S∪{q}(q, τ)|.

We refer to Table 1 for an overview of the algorithms presented in
this section.

Let H be an M × M × T array that stores the height at all points
ofQ, computed using the discretized natural-neighbor interpolation
defined in (4). For a fixed time 0 ≤ i < T , let Qi denote the query
points in time slice i and let Hi denote the corresponding time slice
of H. For a fixed i, by (5) and (6), the computation of Hi involves
computing Vor�(S i−r, i−r), . . . ,Vor�(S i+r, i+r). Since we compute
each Hτ separately, a point of S has to be processed by the GPU
several times. We describe three algorithms that provide tradeoffs
between the number of times each point of S is processed (which
we refer to as the number of passes) and the space (on the GPU)
used by the algorithm.

r2-pass algorithm.. We process each Qi, for 0 ≤ i < T , sepa-
rately. Equations (5) and (6) suggest that we compute N(q, τ) and
D(q, τ) for τ = i − r, . . . , i + r and for all q ∈ Qi. For each τ

we first compute Fτ = GVor(S , τ), giving us a representation of
Vor�(S , τ) = Vor�(S τ, τ). For q ∈ Qi, let γq denote the graph of
the function d((x, y, τ), q), which is a 2D surface, and let γ�q be the
linear approximation of γi, truncated within R(q). Beutel et al [5]
have described an algorithm that uses Fτ and renders the surfaces
{γ�q | q ∈ Qi} so that the color buffer Ci,τ encodes Vor�(S ∪{q}, τ) for
all q ∈ Qi. Then using Fτ and Ci,τ it computes N(q, τ) and D(q, τ).
We call their algoirthm Interpolate(Fτ, i, τ). Depending on the size
of M, r, s and GPU constraints, this may require several rendering
passes and an I/O-efficient partitioning algorithm; we refer to [5]
for details. We assume that the Interpolate procedure returns two
M×M arrays N∇ and D∇ s.t. N∇[q] = N(q, τ) and D∇[q] = D(q, τ).
The pseudo-code of the algorithm is described in Algorithm 1.

Each point p ∈ S is passed to the computation of O(r) slices of
Vor�(S τ, τ) for τ ∈ {btpc−r, . . . , dtpe+r}. Furthermore each Voronoi
diagram slice Vor�(S , τ) is computed 2r+1 times forQτ−r, . . . ,Qτ+r.
Hence each point of S is passed O(r2) times.

Algorithm 1 r2-pass
for i← 0 to T − 1 do

Hi ← Ni ← Di ← 0
for τ ∈ {i − r, . . . i + r} do
F← GVor(S τ, τ)
(N∇,D∇) = Interpolate(F, i, τ)
Ni ← Ni + N∇, Di ← Di + D∇

Hi ← Ni/Di

return H

r-pass algorithm. The overall structure of the algorithm is the
same as before but we save some computation by storing what we
have already computed and re-using it. As before, let frame buffer
Fτ = GVor(S , τ) refer to the combination of Cτ and Dτ describing
Vor�(S , τ). To answer NNI queries for points in Qi we must gen-
erate Fi−r, . . .Fi+r and perform the interpolation on each time-slice.
When we proceed to Qi+1, we must now generate Fi+1−r, . . .Fi+1+r.
We have all of the frame buffers except the last, Fi+1+r, from the pre-
vious step and thus they can be reused by Interpolate step. We only
need to call GVor(S i+1+r, i+1+r). See Algorithm 2 for the pseudo-
code. This algorithm requires storing 2r + 1 frame buffers: 2r to
save values from the previous query grid and one to generate the
new Voronoi diagram. Doing this for Qi for all 0 ≤ i < M in order
lets us generate each Fi only once. This method renders each point
p O(r) times: once for each Vor�(S τ, τ) for τ ∈ {btpc−r, . . . , dtpe+r}.
1-pass algorithm. We now show that the number of passes can
be reduced to 1 if S is time series data and d(·, ·) satisfies certain

Algorithm 2 r-pass
Create F−r−1 . . . Fr−1

for i← 0 to T − 1 do
Hi ← Ni ← Di ← 0
Delete Fi−r−1 from GPU
Fi+r ← GVor(S i+r, i + r)
for τ ∈ {i − r, . . . i + r} do

(N∇,D∇) = Interpolate(Fτ, i, τ)
Ni ← Ni + N∇, Di ← Di + D∇

Hi ← Ni/Di

return H

properties and the GPU supports certain primitives. For simplicity,
we assume that S = Σ1 ∪ Σ2 ∪ · · · , where the t-coordinate of all
points in Σi is i, the time coordinate of the ith slice ofQ, and d(·, ·) is
the weighted Euclidian distance. The first assumption can easily be
removed. The second assumption can be relaxed to a larger family
of distance functions, but identifying this family is technical and
omitted from this version. Recall that Vor(Σi, j) is the projection of
the lower envelope gi

j(x, y) of the functions

gi
j,p(x, y) = −2xxp − 2yyp + x2

p + y2
p + ω2(j − i)2 ∀p ∈ Σi (7)

Since the last term in (7) does not depend on p, it immediately
implies that Vor(Σi, j) is the same for all j and that

gi
j(x, y) = gi

i(x, y) + ω2(j − i)2.

Let Fi
j = (Ci

j,D
i
j) = GVor(Σi, j) — Ci

j[π] stores the height of the
point nearest to π and Di

j stores the distance from π to its nearest
neighbor, and let Fi = Fi

i. Then Fi
j can be computed from Fi by

adding the value ω2(j − i)2 to every pixel in Di. Let Shift(F, δ) be
the procedure that adds the value δ to all pixels in D. Then

Fi
j = Shift(Fi, ω2(j − i)2).

Recall that S j =
⋃r

`=−r Σ j+`. Assuming we have F` for j − r ≤ ` ≤
j + r, we can compute the frame buffer F j = (C j,D j) correspond-
ing to Vor�(S j, j), using the procedure Combine(F j−r, . . . ,F j+r) as
follows. We first compute F`j for j − r ≤ ` ≤ j + r, and set

D j[π] = min
j−r≤`≤ j+r

D`j[π]

and finally set C j[π] to the contents of C`j[π] if D j[π] = D`j[π]. The
pseudo-code can be found in Algorithm 3.

Algorithm 3 Combine(F j−r, . . . ,F j+r)
for all π ∈ F j do
C j[π]← 0, D j[π]← ∞

for i ∈ j − r, . . . , j + r do
Fi

j ← Shift(Fi, ω2(j − i)2)
for all π ∈ F j do

if Di
j[π] < Di[π] then
D j[π]← Di

j[π]
C j[π]← Ci

j[π]
return F j

With these procedures at hand, we modify the r-pass algorithm
as follows, so that each point is processed once. See Algorithm 4
for the pseudo-code. The algorithm maintains the invariant that
while processingQi, it maintains Fi−r, . . . ,Fi+r and also Fi, . . . ,Fi+2r.
While processing of Qi, the algorithm first computes Fi+2r using
GVor(Σi+2r, i + 2r). Next, instead of computing Fi+r by invoking

Σi Σi+1

Fi Fi+1

Fi
i−∆ . . .Fi

i,Fi
i+1 . . .Fi

i+∆ Fi+1
i+1−∆ . . .Fi+1

i ,Fi+1
i+1 . . .F

i+1
i+1+∆

Fi Fi+1

Combine Combine

.

GVor

Shift

Figure 6. The process of creating Fi from sets of data Σi rendering each
point only once.

GVor(S i+r, i+ r), it uses the procedure Combine(Fi, . . . ,Fi+2r). The
rest of the procedure is the same. Note that each point is processed
only once.

Algorithm 4 1-pass

Create F−1 . . .F2r−1 and F−r−1 . . . Fr−1

for i← 0 to T − 1 do
H(Qi)← N(Qi)← D(Qi)← 0
Delete Fi−1 and Fi−r−1 from GPU
Fi+2r ← GVor(Σi+2r, i + 2r)
Fi+r ← Combine(Fi . . .Fi+2r)
for τ ∈ {i − r, . . . i + r} do

(N∇,D∇) = Interpolate(Fτ, i, τ)
Ni ← Ni + N∇, Di ← Di + D∇

Hi ← Ni/Di

return H

5 Experimental Results
We now discuss the details of the implementation and testing of
TerraNNI. It is implemented in C++ and use OpenGL for rendering
on the GPU. We ran our experiments on an Intel Core2 Duo CPU
E6850 at 3.00GHz with 8GB of internal memory. We used Ubuntu
10.4 and two 1TB SATA disk drives in a RAID0 configuration.
Additionally, the machine contained a NVIDIA GeForce GTX 470
graphics card running CUDA 3.0. This card has 1.2GB of memory,
448 CUDA cores, and 14 multiprocessors.

Data sets. We ran TerraNNI on two data sets. We performed a
majority of our tests on LiDAR data collected from the Nags Head,
NC region for years 1997-1999, 2001, 2004, 2005, 2007, and 2008.
The data ranges from 100,000 points per year to nearly 3 million
points per year and comes to a total of just under 20 million points.
This data set takes up 382 megabytes on disk. We will refer to this
data set as the NC coastal data set. The data is freely available at
[1] and was provided to us by Helena Mitasova.

We also performed tests on a much larger LiDAR data set col-
lected from Fort Leonard Wood in Missouri (data courtesy of the
U.S. Army Corps of Engineers) in 2009 and 2010. The data set
consists of approximately 450 million data points over an 80.5km2

region and takes up 8.8GB on disk.

Algorithm r2 r
Shape Rendered Hyperboloid Plane Hyperboloid Plane
Binning Time 17.89s 17.53s 13.98s 17.2s

GVor(S) 8m 15s 3m 16s 1m 24s 35.8s
Draw Query Cones 4m 1s 2m 26s 3m 44s 2m 28s

Interpolate 3m 45s 4m 18s 2m 45s 3m 5s
Write points 5.2s 4.54s 3.47s 4.53s

Total running time 16m 26s 10m 23s 8m 11s 6m 32s

Table 2. Comparison of running times of different variants of our algorithm on the NC coastal data set.

Parameter choices. Within our experiments there are numerous
parameters that can be adjusted to tune our TerraNNI’s speed and
quality trade-offs. Many of these parameters stem from the 2D al-
gorithm [5] and we refer to that paper for further details. We use a
weighted Euclidean metric as the distance function for all our tests.
The speed of the algorithm is highly dependent on the number of
triangles rendered. In rendering the weighted Euclidean metric we
tested rendering hyperboloids γi as well as planes hi. In rendering
each hyperboloid we set k = 50 and m = 5 such that each γ�i was
composed of 500 triangles. As discussed in Section 3, when work-
ing with the Euclidean metric we can apply the lifting transform to
render planes rather than hyperboloids. When rendering planes, we
clip the plane hi to an ellipse h̄i, we approximate it by a rectangle
h�i circumscribing h̄i, and partition h�i into two triangles.
Efficiency. The largest data set in our tests was the Ford Leonard
Wood data set which covers two years. Here we created a 3D grid
with a spatial resolution of 5m (a total of 4 million query points)
and positioned in time halfway between the 2009 and 2010 surveys.
This run took 26 minutes to complete.

The NC coastal data set is interesting due to the larger temporal
range of the data. We used this data set to compare various trade-
offs in the r-pass and r2-pass algorithms. We ran different variants
of TerraNNI, every time producing a 3D grid with at a spatial 1
meter resolution over a 2.3 × 1.8km2 region. The 3D grid has 12
slices in time, corresponding to producing an output every half year
for 6 years in total. This 3D grid has a total of about 48 million
voxels. The results can be found in Table 2. The table shows how
much time TerraNNI spends in each phase, and include timings for
the variant using the lifting transform where we only have to render
a plane (two triangles) per input and query point. As can be seen in
the table, the r-pass algorithm takes 6 minutes and 32 seconds using
planes, approximately 60% of the time of the r2-pass algorithm, and
takes 8 minutes and 11 seconds when using hyperboloids, 50% of
the time of the r2-pass algorithm. We save between 40% and 55%
of the rendering time by using planes rather than hyperboloids since
the planes consist of significantly less triangles.

As indicated by Table 2 the Interpolate procedure takes longer
for planes than hyperboloids. As described above, the way we clip
and approximate hyperboloids and planes γi and hi to obtain γ�i
and h�i , the xy-projection of the latter covers a larger area in the
xy-plane, and thus cover more pixels. Consequently Interpolate
performs additional atomic operations in this case (see [5] for de-
tails). By approximating h̄i with a polygon h�i with more vertices
(k) and thus increasing the number of triangles into which h�i is de-
composed, one can achieve a trade-off between the time spent by
the GVor and Interpolate procedures and choose a value of k that
minimizes the overall running time.

We also compared our implementation to traditional (exact) CPU
algorithms. Note that, in addition to being confined to the CPU,
these algorithms also attemp to robustly and exactly compute the
Voronoi diagrams. We used the NC Coastal data set as a starting

point for these tests but also tried with smaller synthetic data sets.
Common for all the algorithms below is that they have problems
storing the entire Voronoi diagram in memory, and in practice this
means that the available system memory decides how large data
sets they can handle. Furthormore, the NC Coastal data set is a time
series, i.e., the points have one of 8 different time values. Thus there
are millions of coplanar points which causes robustness issues for
exact algorithms and we often had to randomly perturb the points
in the time axis to work around this issue. Spatially, the points tend
to cover the same area as well, leading to further robustness issues.

The Interpolate3d [10] package is a freely available 3D NNI im-
plementations for performing NNI of 3D vector fields on the CPU.
Unfortunately it does not run on the full NC Coastal data set, ex-
hausting the 8GB of system memory after 2 hours, about half-
way during the construction of the Voronoi diagram of the input
points. It also runs out of memory interpolating 15 million points
(the NC Coastal data set has 20 million points). But it is able to
complete with 10 million input points, and interpolating at 50,000
query points in about three hours, with the memory usage peaking
at 7.8GB. Compare this to the r-pass algorithm using planes that in-
terpolates at 48 million query points using the full 20 million point
set in less than 7 minutes. The Interpolate3d algorithm had issues
with the coplanar points of the original data set and we perturbed
the points in time to complete the test.

We also compared TerraNNI against state of the art CPU-based
algorithms for computing the Delaunay triangulation, the dual of
the Voronoi diagram. This test is relevant since this computation
is a fundamental part of computing NNI. We used the algorithm
from the Cgal [2] library as well as the one available in Qhull [4].
Cgal was able to successfully compute the Delaunay triangulation
of the NC coastal data set, using took 11 minutes and with a peak
memory use of just under 7GB. Impressively, it ran on the origi-
nal unperturbed data set. However, this is significantly slower than
TerraNNI which takes six and a half minutes to do the full interpo-
lation and only 35.8 seconds of this time is spent on constructing
the pixelized truncated Voronoi diagram. Additionally the Cgal al-
gorithm is already hitting the limit on our system memory and was
unable to successfully triangulate the full Fort Leonard Wood data
set.

Qhull [4] offers a variety of strategies for dealing with degen-
eracies, we choose to perturb the input points along the time axis.
Qhull runs out of memory after a couple of minutes on the full data
set, the largest data set we were able to handle with a 8GB of sys-
tem memory was 3 million points which took 3 and a half minutes
with a peak memory use of 6GB. With 4 milion points the mem-
ory used exceeded the 8GB of system memory and the computation
time increased dramatically to one and a half hour.

6 Application to Change Analysis
In this section we describe an application of TerraNNI to geomor-
phologic analysis of multi-temporal NC coastal LiDAR data.

(a) Regression slope values for cmin = 0 (b) Regression slope values for cmin = 0.85

Figure 7. Regression line slope values from year 2000 to 2006 superimposed on year 2000 DEM.

Figure 1(c) gives a map of Nags Head, NC. The focus of our ap-
plication study is Jockey’s Ridge state park sand dune. Specifically,
we investigate the annual sand dune growth and erosion from years
2000 to 2006. In order to perform the study, first we apply Ter-
raNNI to interpolate a digital elevation model (DEM) for each year
from 2000 to 2006, inclusively, since many of the yearly collects
(e.g., 2000, 2002, and 2003) are not available. We set the radius
of influence to 2. Second, we estimate a linear regression model
for each pixel and all of its temporal neighbors (i.e., years 2000 to
2006). For example, if p(x, y, t) is the pixel value (height) at lo-
cation (x, y) and time t, a linear regression model is estimated for
the set {p(x, y, t1), . . . , p(x, y, tn)}. Third, we apply the change anal-
ysis method of [16] by examining the rates of change (i.e., slopes)
of the model estimates for pixel observations that exhibit strong
linear trends. As in [16], we define the notion of a coefficient of
determination χ: a measure of the reliability of the linear model
in predicting the pixel values (response variable), χ ∈ [0, 1] is ex-
pressed as follows: χ = 1 − (SSerr/SStot) where SSerr is the sum of
squared errors between the linear model’s estimates and response
variable and SStot is the total sum of squared deviations of the re-
sponse variable to its expectation [7]. A high χ implies that the
SSerr is relatively small compared to SStot, indicating that the linear
model can well predict the sample observations. We set a threshold
value cmin and choose those pixels for which χ ≥ cmin. The thresh-
old cmin can be regarded as the minimum proportion of the variation
in the response variable that is captured by the linear model.

Figure 7(a) depicts the slope values for the entire sand dune re-
gion for cmin = 0. Strong erosions (negative slopes) are observed in
the northwest region with extensive accumulation (positive slopes)
in the southeast area of the dune. This erosion and accumulation
suggest a net wind force pattern movement towards the southeast
direction; however, these observed slope values do not convey ad-
ditional information on the nature of the movements throughout
the years. But by using the linear regression estimates, further in-
sights into the inter-annual patterns can be harnessed by extracting
those composite movements that exhibit a linear trend. We can de-
termine these linearly dependent patterns by pruning those DEM
pixels that have large deviations from the regression model, which
is achieved by increasing cmin. Figure 7(b) shows the slope values
for cmin = 0.85. In this figure, we can see regions of the dune which
have undergone continuous changes following a predominantly lin-
ear trend. We exemplify these changes for year 2002 to 2004 in
Figure 8. From 2002 to 2003, the measured total sand growth and

erosion are 20512 m3 and 82714 m3, respectively. For years 2003
to 2004, similar level of dune activity is observed with total growth
and erosion volumes of 33895 m3 and 74809 m3, respectively. Be-
cause the proposed NNI approach can efficiently interpolate the
missing DEMs in both space and time, geomorphologic analyses
such as the one demonstrated in this case study can be rapidly and
effectively executed on large areas and at high resolutions.

7 Conclusion
In this paper we have presented three algorithms for performing
(discretized) NNI on a 3D grid using a GPU. The three algorithms
provide different tradeoffs between GPU computational complexity
and GPU memory requirement ranging from storing one buffer on
the GPU and processing each input point a quadratic (in r) number
of times, to processing each input point one time, but with memory
use linear in the time region of influence. Furthermore, we used
the lifting transform to limit the polygonal complexity of the sur-
faces used for each point, shifting the bottleneck away from ren-
dering triangles. Our algorithm, and its implementation, scale to
very large data sets and the underlying discretization works around
the robustness problems that add additional complexity to existing
CPU-based algorithms. We are unaware of any robust implementa-
tion of NNI for points in R3 that can handle large data sets.

Our experimental results gives an example of an application of
our algorithm and suggests that is practical in real world situations,
outperforming exact CPU algorithms on medium sized data sets
and enabling the efficient processing on even larger data sets with
limited memory requirements. We plan on making our implemen-
tation of TerraNNI publicly available.

Acknowlegdements
The authors thank Helena Mitasova and the U.S. Army Corps of
Engineers for access to data and and Tamal Dey and Danny Halperin
for helpful discussions.

References
[1] NOAA coastal services center, LI-

DAR data retrieval tool. http://csc-s-maps-
q.csc.noaa.gov/dataviewer/viewer.html?keyword=lidar.

[2] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

(a) Changes from 2002 to 2003 superimposed on 2002 DEM (b) Changes from 2003 to 2004 superimposed on 2003 DEM

Figure 8. Yearly changes (meters) for areas with regression model coefficient of determination ≥ 0.85.

[3] D. Attali and J.-D. Boissonnat. A linear bound on the com-
plexity of the Delaunay triangulation of points on polyhedral
surfaces. Discrete & Computational Geometry, 31:369–384,
2004.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Trans. on Mathematical
Software, 22(4):469–483, 1996.

[5] A. Beutel, T. Mølhave, and P. K. Agarwal. Natural neighbor
interpolation based grid DEM construction using a GPU. In
Proc. 18th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, pages 172–
181, 11 2010.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry – Algorithms and
Applications. Springer Verlag, 1997.

[7] N. Draper and H. Smith. Applied Regression Analysis. Wiley-
Interscience, 3rd edition, 1998.

[8] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkatasub-
ramanian. Hardware-assisted natural neighbor interpolation.
In Proc. 7th Workshop on Algorithm Engineering and Exper-
iments (ALENEX, 2005.

[9] S. Ghosh, A. E. Gelfand, and T. Mølhave. Attaching un-
certainty to deterministic spatial interpolations. Statistical
Methodology, 2011. In Print.

[10] R. Hemsley. Interpolation on a magnetic field. 2009.
http://code.google.com/p/interpolate3d/.

[11] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Cul-
ver. Fast computation of generalized Voronoi diagrams using
graphics hardware. In Proc. 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 277–286,
1999.

[12] P. C. Kyriakidis and A. G. Journel. Geostatistics space-time
models: A review. Mathematical Geology, 31(6):651–684,
1999.

[13] L. Li and P. Revesz. A comparison of spatio-temporal interpo-
lation methods. In Geographic Information Science, volume
2478, pages 145–160. Springer, 2002.

[14] J. Mateu, F. Montes, and M. Fuentes. Recent advances in
space-time statistics with applications to environmental data:
An overview. Geophysical Research, 108(8774), 2003.

[15] E. Miller. Towards a 4D-GIS: four dimensional interpolation
utilizing kriging. In Z. Kemp, editor, Innovations in GIS 4,
pages 181–197. 1997.

[16] H. Mitasova, E. Hardin, M. Overton, and R. Harmon. New
spatial measures of terrain dynamics derived from time se-
ries of lidar data. In Proc. 17th International Conference on
Geoinformatics, pages 1–6, 2009.

[17] H. Mitasova, L. Mitas, W. M. Brown, D. P. Gerdes, I. Kosi-
novsky, and T. Baker. Modeling spatially and temporally dis-
tributed phenomena: new methods and tools for GRASS GIS.
International Journal of Geographical Information Systems,
9(4):433–446, 1995.

[18] H. Mitasova, M. Overton, and R. S. Harmon. Geospatial anal-
ysis of a coastal sand dune field evolution: Jockey’s ridge,
north carolina. Geomorphology, 72(1-4):204 – 221, 2005.

[19] T. Mølhave, P. K. Agarwal, L. Arge, and M. Revsbæk. Scal-
able algorithms for large high-resolution terrain data. In Proc.
1st International Conference and Exhibition on Computing
for Geospatial Research & Application. ACM, 2010.

[20] NVIDIA. CUDA homepage. http://nvidia.com/cuda, 2010.
3.0.

[21] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[22] S. Shekhar and H. Xiong, editors. Encyclopedia of GIS.
Springer, 2008.

[23] R. Sibson. A brief description of natural neighbour interpo-
lation. In V. Barnet, editor, Interpreting Multivariate Data,
pages 21–36. John Wiley & Sons, Chichester, 1981.

[24] C. K. Wikle, L. M. Berliner, and N. Cressie. Hierarchical
Bayesian space-time models. Environmental and Ecological
Statistics, 5:117–154, 1998.

