Interacting Viruses in Networks: Can Both Survive?

Alex Beutel

B. Aditya Prakash

Roni Rosenfeld

Christos Faloutsos

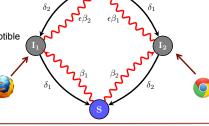
Carnegie Mellon University abeutel@cs.cmu.edu

Carnegie Mellon University badityap@cs.cmu.edu

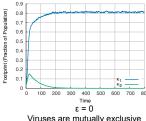
Carnegie Mellon University roni@cs.cmu.edu

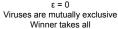
Carnegie Mellon University christos@cs.cmu.edu

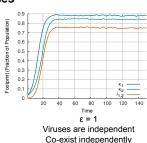
How do we model competition between products?

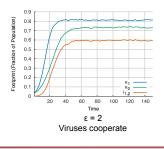


Not perfect competition

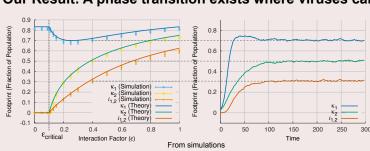

Person can use both Chrome and Firefox

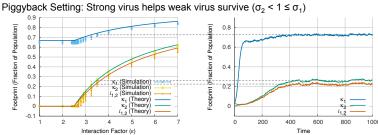

A Simple Model: SI_{1|2}S

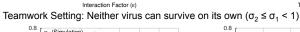

- · Modified SIS (flu-like) model
- Susceptible Infected_{1 or 2} Susceptible
- Interaction Factor ε
- Full mutual immunity $\varepsilon = 0$
- Competition $\varepsilon < 1$
- Cooperation $\varepsilon > 1$

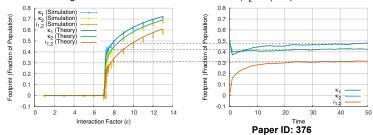


Previous work focused on simpler cases

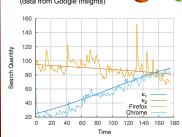


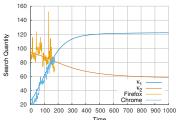

Our Result: A phase transition exists where viruses can co-exists!




Given our $\mathrm{SI}_{1|2}\mathrm{S}$ model and a fully connected graph, there exists an $\epsilon_{\mathrm{critical}}$ such that for $\epsilon \geq \epsilon_{\mathrm{critical}}$, there is a fixed point where both viruses survive.

$$\epsilon_{\text{critical}} = \begin{cases} \frac{\sigma_1 - \sigma_2}{\sigma_2(\sigma_1 - 1)} & \text{if } \sigma_1 + \sigma_2 \ge 2\\ \frac{2(1 + \sqrt{1 - \sigma_1 \sigma_2})}{\sigma_1 \sigma_2} & \text{if } \sigma_1 + \sigma_2 < 2 \end{cases}$$


Cooperating Viruses: $\varepsilon > 1$



Real World Example:

