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ABSTRACT
Given two competing products (or memes, or viruses etc.)
spreading over a given network, can we predict what will
happen at the end, that is, which product will ’win’, in terms
of highest market share? One may näıvely expect that the
better product (stronger virus) will just have a larger foot-
print, proportional to the quality ratio of the products (or
strength ratio of the viruses). However, we prove the sur-
prising result that, under realistic conditions, for any graph
topology, the stronger virus completely wipes-out the weaker
one, thus not merely ‘winning’ but ‘taking it all’. In addi-
tion to the proofs, we also demonstrate our result with sim-
ulations over diverse, real graph topologies, including the
social-contact graph of the city of Portland OR (about 31
million edges and 1 million nodes) and internet AS router
graphs. Finally, we also provide real data about competing
products from Google-Insights, like Facebook-Myspace, and
we show again that they agree with our analysis.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining

Keywords
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1. INTRODUCTION
Given two competing products like iPhone/Android or

Blu-ray/HD-DVD, and ‘word of mouth’ adoption of them,
what will happen in the end? This question is of interest
in numerous settings. For example, in a biological virus
setting, we have the common flu versus avian flu. In a com-
puter virus setting, clever virus authors make sure that their
code eliminates most other computer viruses from the vic-
tim’s disk. The list continues, with competing scientific the-
ories, competing memes (‘coke’ vs ‘soda’ vs ‘pop’), and many
more.

Our main result is that we answer the above question
analytically, and we show that ‘winner takes all’ (WTA),
or, more accurately, the weaker product/virus will soon be-
come extinct. The fate of the stronger virus depends on
its strength: below the epidemic threshold (more details,
later), it will also become extinct, but above that it has good
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Figure 1: (a) Number of infected vs time for sim-
ulations on the AS-OREGON network for a virus
propagating in isolation (brown square) - note that
it is above the epidemic threshold and hence doesn’t
die out, and the same virus competing with an even
stronger virus (green) - note that it now dies-out
completely (red). (b) Winner takes all in search
interest data from Google-Insights for Facebook
(green) and Myspace (red). Even though Myspace
got a head-start, Facebook wiped it out.

chances of lingering practically for ever. In more detail, we
assume

(a) an SIS-like model (no immunity, like flu),
(b) perfect mutual immunity (a node can have at most one

of the viruses/products, at any given time),
(c) the underlying network is connected (every node can

reach every other node)
(d) the network is ‘fair-play’, in the sense that all nodes

have the same behavior towards the two competing
products/viruses: everybody has the same probability
β1 of getting infected with virus-1 by a sick neighbor,
and similarly for virus-2, and for the recovery times.

One of the main contributions is that our theoretical anal-
ysis holds for any graph topology, while earlier work focuses
only on specific-topology graphs (cliques, random, etc).

Figure 1(a) gives an illustration of our result: it shows
the number of infected nodes vs time for computer simula-
tions on the AS-OREGON network (see Section 5 for de-
tails) for a ‘above-threshold’ virus propagating in isolation
(brown square) in one case and the virus competing with
an even stronger virus (green) in another case. Clearly it is
wiped out during the competition, although it gave a fight
(red, note the bump). Note that though both the viruses
are above the threshold, the weaker virus is wiped out. We
prove this result for arbitrary underlying networks in this
paper.

Figure 1(b) shows the time evolution of search-interest for
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a pair of competing products Facebook-Myspace. The data
came from Google-Insights. Notice that again, the weaker
competitor is extinct (or close to that). We will give more
case-studies later in Section 5.

The outline of the paper is as follows: we review related
work in § 2 and formulate the problem giving details of our
model in § 3. We give the analysis and proof of our WTA
result in § 4 while we demonstrate it using simulations and
real case-studies in § 5. Finally, we discuss some subtle issues
in § 6 and conclude in § 7.

2. RELATED WORK
We present the related work in this section, which can

be categorized into three parts: epidemic thresholds, infor-
mation diffusion and ecology. Most of these works either
consider only single virus models or typically use only sim-
ulation or analyze on very restricted underlying networks.

Epidemic Thresholds Much research in virus propaga-
tion has been devoted to studying the so-called epidemic
threshold, that is, to determine the condition under which
an epidemic will not break out. Widely-studied epidemio-
logical models include the so-called homogeneous models [4,
26, 3], which assume that every individual has equal contact
to others in the population. While earlier works [20, 28]
focus on some specific types of graph structure (e.g., ran-
dom graphs, power-law graphs, etc), Chakrabarti et al. [9]
and Ganesh et al. [11] found that, for the flu-like SIS model,
the epidemic threshold for any arbitrary graph depends on
the leading eigenvalue of the adjacency matrix of the graph.
Prakash et. al. [30] further discovered that the leading eigen-
value and a model-dependent constant are the only param-
eters that determine the epidemic threshold for almost all
virus propagation models. However, all of these works focus
on single virus models.

Information Diffusion There is also a lot of research inter-
est in studying other types of information dissemination pro-
cesses on large graphs, including (a) information cascades [6,
12], (b) blog propagation [24, 14, 22, 31], and (c) viral mar-
keting and product penetration [23]. Broadly two classes
of information cascade models have been proposed (a) in-
dependent cascade (IC) [19] (essentially a ‘SIR’ model) and
(b) linear threshold (LT) [13]. Research work in multiple
cascades has looked into extensions of the IC model with
the restriction that nodes can’t switch from one competitor
to the other [5, 21]. One of the few works to consider switch-
ing between the competitors is Pathak et. al. [29]. However,
their work differs from ours in several important aspects,
as they: (a) use the LT model, as opposed to the ‘flu-like’
SIS model (a cascade style model) we use; (b) assume that
nodes may randomly switch between products; (c) do not
find WTA phenomena; and (d) give no closed-form results -
only an algorithm to compute the steady state.

Ecology In ecology, the principle of ‘competitive exclusion’
espouses that two species can not occupy the same ecologi-
cal niche in the long term. Research has gone into studying
this using various propagation models like SIS, SIR, Lotka-
Volterra [7, 8, 1, 2]. They typically did simulations, or only
studied homogenous or structured topologies like cliques.

Distinguishing features of current work: In short, none

of the previous work fulfills all the conditions of this current
work: (a) analytical proof of ’WTA’ (b) in arbitrary topolo-
gies (c) under a SIS-like model.

3. PROBLEM FORMULATION
In this section, we formulate our problem, giving details

about the model used and the assumptions. Table 1 explains
the terminology we have used in the paper. Bold letters
typically denote matrices (A, C etc.) or vectors (P̃, ũ etc.).

Table 1: Terms and Symbols
Symbol Definition and Description

WTA Winner-Takes-All
SI1I2S our competing viruses model

β1(or β2) attack rate of virus 1 (or virus 2)
δ1(or δ2) cure rate of virus 1 (or virus 2)
A adjacency matrix of the underlying

graph
λM set of eigenvalues of the matrix M
λ1(M) largest eigenvalue of matrix M
λ λ1(A)
σ1 λβ1/δ1 (strength of virus 1)
σ2 λβ2/δ2 (strength of virus 2)

MT transpose of M
NE(i) set of neighbors of node i in the graph
I identity matrix of appropriate size
0 all-zeros matrix of appropriate size

diag(P̃) the diagonal matrix with elements of vec-
tor P̃ in the diagonal

SI1 I2

β1

δ1

β2

δ2

Figure 2: State Diagram for a node in the graph un-
der our SI1I2S competing viruses model. The node
is in the S state if it doesn’t have either competitor
(say iPhone or Android). It is in I1 if it gets the
iPhone (virus 1) and is in I2 if it gets the Android
(virus 2). The transitions from S to I1 or I2 (red-
curvy arrows) depend on the infected neighbors of
the node. The remaining transitions, in contrast,
are self-transitions, without the aid of any neighbor.

3.1 The propagation model
We assume that the competing viruses are spreading on

the network according to a propagation model, which we de-
scribe next. We call our propagation model SI1I2S, based
on the popular“flu-like”SIS (Susceptible-Infected-Susceptible)
model [16]. SI1I2S denotes Susceptible - Infected1 - Infected2

- Susceptible. Each node in the graph can be in one of three
states: Susceptible (healthy), I1 (infected by virus 1), or I2
(infected by virus 2). The state transition diagram as seen
from a node in the network is shown in Figure 2. We could
have extended other single virus models as well, but we be-
lieve that our model is a reasonable starting point, and we
leave the analysis of other models as future work.
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Healing (virus death) rate: δ. If a node is in state
I1 (or I2), it recovers on its own with rate δ1 (or δ2). This
implies that the time taken for each infected node to heal
is exponentially distributed with parameter δ1 (or δ2). This
parameter captures the persistence of the virus in an inverse
way: a high δ means low persistence. For example, a very
convincing rumor that sticks to one’s mind will be modeled
with a low δ value.

Attack (virus transmission) rate: β. A healthy node
gets infected by infected neighbors, and the virus transmiss-
ability is captured by β1 and β2. Specifically, an infected
node transmits its infection to each of its neighbors inde-
pendently at rate β1 (or β2). Hence, the time taken for each
infected node to transmit the virus to a neighbor over a link
is exponentially distributed with parameter β1 (or β2).

This is a novel generalization of the single-virus SIS model
to a competing-viruses scenario. Note the competition be-
tween the viruses: each virus has to compete with the other
for healthy victims. Moreover, note that we assume full
mutual immunity : while a node is infected by one virus, it
cannot be infected by the other.

Fair-play: We assume that the competitors are playing a
‘fair game’: All nodes in the network have the same model
parameters (β’s and δ’s) for each of the viruses and behave
according to the state-diagram in Figure 2.

3.2 Problem Statement
We are now in a position to state the problem formally.

We assume the underlying network is connected - otherwise
we just have separate disconnected problems.
Competing viruses problem
Given: A undirected connected graph G, and the propaga-
tion model (SI1I2S) parameters (β1, δ1 for virus 1, β2, δ2
for virus 2)
Find : What will happen at the end i.e. what are the steady-
state populations of the two viruses.

4. WTA: RESULTS AND PROOFS
We prove our winner-takes-all (WTA) result on an arbi-

trary undirected graph in this section. Our main result can
be formally stated as follows:

Theorem 1 (Winner takes all). Given an arbitrary
undirected, connected graph with adjacency matrix A and the
SI1I2S model parameters (β1, β2, δ1, δ2), then virus 1 will
dominate and virus 2 will completely die-out in the steady
state if virus 1 is above threshold1 and the strength of virus
1 is greater than the strength of virus 2 i.e. if σ1 > 1 and
σ1 > σ2.

The proof is involved, and we present it in the next few
pages. We will first prove it for simpler cases of the underly-
ing network - namely a clique and a barbell before we move
on to arbitrary graphs.

4.1 Proof roadmap
In short, the proof has the following steps:

1. Dynamical System: construct a suitable dynami-
cal system of differential equations for the propagation
process,

1It is known that in the single-virus SIS model, a virus dies-
out unless it is above the epidemic threshold i.e. unless
βλ/δ > 1 [30], where λ is the largest eigenvalue of the adja-
cency matrix of the underlying graph.

2. Fixed Points: prove that there are only three fixed
points and at least one of the viruses has to die out at
any fixed point, and

3. Stability Conditions: give the precise conditions for
each fixed point to be stable (attracting).

Intuitively, the dynamical system generates a field on which
we show that only 3 possible fixed points can exist. More-
over the field makes only one of the possible fixed points
stable under any given scenario. Figures 3(a-c) shows the
field-plots in a simple case - when the underlying graph is a
clique2 of size N = 1000. Specifically we show three scenar-
ios (wlog, we assume the first virus is the stronger virus):

BELOW : 1 > β1N/δ1 = 0.6 > β2N/δ2 = 0.2
(both viruses below the threshold)

MIXED : β1N/δ1 = 6 > 1 > β2N/δ2 = 0.2
(one above and one below the threshold)

ABOVE : β1N/δ1 = 6 > β2N/δ2 = 4 > 1
(both above the threshold)

The field plots illustrate the fixed points in this setting and
their stability. In this case, we have a 2-dimensional field,
but for an arbitrary graph it will depend on the number of
nodes in the graph. At any point on the field, the direction of
the field-arrow tells us where the system will go next. Stable
fixed points are marked by bold circles, unstable fixed points
by hollow circles, x-axis denotes the # of infected nodes
by virus 2 and the y-axis denotes the # infected by virus
1 (the stronger virus). For example, in Figure 3(c), both
viruses are above threshold, yet the FP1 and FP3 points
are unstable while the other fixed point corresponding to the
stronger virus winning (FP2) is stable. The trajectory of the
simulation is overlaid on the field plots - we can see that the
system follows the field lines and is attracted towards and
ends up at the stable fixed point in the steady state. We
also show the time-evolution separately in Figures 3(d-f) -
especially note part (f) (ABOVE), virus 2 tries to take over,
but is over-powered by virus 1 which goes on to dominate.
We can similarly observe the BELOW and MIXED scenarios
as well.

We elaborate a bit more on the steps next. Consider a
dynamical system (set of differential equations) of the form
x′ = F (x), where x′ is the (component-wise) time derivative
of x, and F : Rn → Rn is continuous and differentiable. If
F (x0) = 0, then x0 is a stationary point (also called a fixed
point). The proof begins by setting up the propagation as
a dynamical system of non-linear differential equations and
then analyzes the possible fixed points and their stability
conditions. In principle, one might expect that there might
be several fixed points of the system corresponding to differ-
ent proportions of the populations of the two virus. But we
prove that in fact there are always only three fixed points
possible and in each at least one virus gets wiped-out.

Further, intuitively, if a fixed point is not stable then the
system would be repelled whenever it tries to approach that
fixed point. Hence, to fully characterize the fixed points,
we need to derive the stability conditions, which give us the
conditions for each of these fixed points to be stable and
attracting.

For characterizing the stability of the fixed points, we use
a well-known result from dynamical system theory (c.f. [17]).
The fixed points will be a hyperbolic fixed point (i.e. where

2every node is connected to every other node.
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(b) MIXED (Field-plot)
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(c) ABOVE (Field-plot)
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(d) BELOW (Time-plot)
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(e) MIXED (Time-plot)
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(f) ABOVE (Time-plot)

Figure 3: (a-c) Field plots for clique of size 1000 for various cases. Stable fixed points are marked by bold
circles, unstable fixed points by hollow circles, while the y-axis denotes the number of infected nodes by virus
1 and the x-axis denotes the number infected by virus 2. The simulation trajectory is overlaid. The field
plots illustrate the fixed points in this setting and their stability. (d-f) Corresponding Time evolution plots
of the competition. Note that virus 2 (red curve) in (f) could have won in isolation, but lost to virus 1.

the linearized stability analysis can be performed) only when
none of the eigenvalues of the corresponding Jacobian3 has
a zero real part. Further, the system will be stable at a
hyperbolic fixed point (attractor) only if the real part of
the eigenvalues of the Jacobian is negative. So to make a
fixed point a hyperbolic stable attractor we need to impose
the condition that the real parts of all the eigenvalues of the
corresponding Jacobian should be negative. We next show
this proof scheme for the special case of a clique topology.

4.2 Special case: Clique Topology
In a clique, all nodes are connected to each other with

undirected and unweighted edges. Each node is identical to
the other and hence our system is a simple continuous time
markov chain, due to which we can write down the system
equations directly. Let N be the size of the clique and I1
be the number of nodes infected by virus 1 at some time t.
Similarly define I2.

Dynamical System: Clearly, under our SI1I2S model, we
have the following system equations:

dI1
dt

= β1(N − I1 − I2)I1 − δ1I1
dI2
dt

= β2(N − I1 − I2)I2 − δ2I2

Fixed Points There are three fixed points of the system of
differential equations above (when the rates of change in I1
and I2 are zero):

1. {I1 → 0, I2 → 0} (i.e. the viruses die-out)

3The Jacobian is the matrix of all component-wise first-
order partial derivatives of x′ with respect to x evaluated
at the fixed point.

2.
{
I1 → N − δ1

β1
, I2 → 0

}
(i.e. only virus 1 survives)

3.
{
I2 → N − δ2

β2
, I1 → 0

}
(i.e. only virus 2 survives)

Stability Conditions The corresponding Jacobians at the
fixed points are:

1. J1 =

[
Nβ1 − δ1 0

0 Nβ2 − δ2

]

2. J2 =

[
−δ1 + β1

(
N − 2

(
N − δ1

β1

))
−β1

(
N − δ1

β1

)
0 β2δ1

β1
− δ2

]

3. J3 =

[
−δ1 + β1δ2

β2
0

−β2
(
N − δ2

β2

)
−δ2 + β2

(
N − 2

(
N − δ2

β2

)) ]
The eigenvalues of the Jacobians can be seen to be:

1. λJ1 ≡
{
β1(N − δ1

β1
), β2(N − δ2

β2
)
}

2. λJ2 ≡
{
β1( δ1

β1
−N), β2( δ1

β1
− δ2

β2
)
}

3. λJ3 ≡
{
β1( δ2

β2
−N), β2( δ2

β2
− δ1

β1
)
}

From our preceding discussion we know that to have stable
fixed points we require that the real part of the eigenvalues of
the Jacobians should be negative. Clearly the corresponding
conditions for the fixed point to be (a) hyperbolic and (b)
stable attractor are:

1. β1N
δ1

< 1 and β2N
δ2

< 1

(i.e. both are below threshold)
2. β1N

δ1
> 1 and β1N

δ1
> β2N

δ2

(i.e. virus 1 is above threshold and virus 1 strength is
greater than virus 2)
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3. β2N
δ2

> 1 and β2N
δ2

> β1N
δ1

(i.e. virus 2 is above threshold and virus 2 strength is
greater than virus 1)

Firstly note that we recover a result similar to the single-
virus SIS model case - that if the viruses are below the epi-
demic threshold, they both die-out. Secondly, we can con-
clude that in case of a clique, the stronger virus wipes-out
the weaker virus if it is above the epidemic threshold.

Non-hyperbolic fixed points: We can see that the fixed points
will be non-hyperbolic if the virus strengths are equal. Hence,
in this case, no conclusions can be drawn from the linearized
analysis and we take a different route. Note that we always
have: ∫ I1

I01

dI1
β1I1

+

∫ t

0

δ1
β1
dt =

∫ I2

I02

dI2
β2I2

+

∫ t

0

δ2
β2
dt (1)

⇒ Iβ21

Iβ12

× (I02 )β1

(I01 )β2
= e

β1β2(
δ2
β2
− δ1

β1
)t

(2)

where I01 and I02 are the initial values of I1 and I2. The
R.H.S. will evaluate to one in our case (the virus strengths
are equal). Hence now, the ratio of virus populations at any
given time t will be directly proportional to the initial ratio
(up to some exponents). Also, clearly, the maximal ratios
are attained at one of the last two fixed points.

4.3 Special Case: Barbell Graph
A barbell graph G has two cliques (say clique C1 and C2

of size N each) connected through weak edges. Specifically,
we assume that all nodes in C1 are connected to all nodes
in C2 (and vice versa) with edges of weight ε, whereas they
are connected with nodes within the same clique with edges
of weight 1. In this case, by symmetry we can see that the
virus populations in both the cliques should remain the same
at the steady state. If we follow the steps in the case of a
single clique, we get at steady state:

β1(N − I1 − I2)I1(1 + ε) = δ1I1

β2(N − I1 − I2)I2(1 + ε) = δ2I2

Hence, the only possible fixed points are:

1. {I1 → 0, I2 → 0} (i.e. the viruses die-out)

2.
{
I1 → N − δ1

β1∗(1+ε)
, I2 → 0

}
(i.e. only virus 1 sur-

vives)

3.
{
I2 → N − δ2

β2∗(1+ε)
, I1 → 0

}
(i.e. only virus 2 sur-

vives)

Moreover, continuing similarly as the single clique case, we
can see that the stronger virus again wipes-out the weaker
virus as long as it is above the epidemic threshold (note that
in this case λ = (1 + ε)N , hence the threshold condition for
a single virus is (1 + ε)βN/δ > 1).

4.4 General Arbitrary Graph
Let A be the adjacency matrix of the arbitrary graph of

N nodes. Let pi,1 be the probability of node i to be in the I1
state. Similarly define pi,2 and si is the probability of node
i being in the susceptible state. Clearly, si + pi,1 + pi,2 = 1.

Dynamical System: As we have a continuous time pro-
cess, the following system equations hold for each node i:

dpi,1
dt

= −δ1pi,1 + β1(1− pi,1 − pi,2)
∑
j

(Aij1j,1)

dpi,2
dt

= −δ2pi,2 + β2(1− pi,1 − pi,2)
∑
j

(Aij1j,2)

where 1j,k (for k = 1, 2) is the indicator random variable
denoting if node j is infected with virus k. Our system is
not a markov chain due to the presence of random variables
1j,k in the rate equations. But after making a mean-field
approximation (1j,1 ≈ E[1j,1] = pj,1 and 1j,2 ≈ pj,2, where
E[X] is the expected value of the random variable X), we
get the following dynamical system:

dpi,1
dt

= −δ1pi,1 + β1(1− pi,1 − pi,2)
∑
j

(Aijpj,1) (3)

dpi,2
dt

= −δ2pi,2 + β2(1− pi,1 − pi,2)
∑
j

(Aijpj,2) (4)

(for each node i).

Fixed Points: At the steady state i.e. at fixed points where
the change in probabilities will be zero, we get (for each node
i):

δ1pi,1 = β1(1− pi,1 − pi,2)
∑
j

(Aijpj,1) (5)

δ2pi,2 = β2(1− pi,1 − pi,2)
∑
j

(Aijpj,2) (6)

which can be written in vector-form as:

β1SAP̃1 = δ1P̃1 (7)

β2SAP̃2 = δ2P̃2 (8)

where P̃1 = [p1,1, p2,1, . . . , pN,1]T , P̃2 = [p1,2, p2,2, . . . , pN,2]T

and S = diag(si) = I− diag(P̃1 + P̃2).
In all of the following analysis, we assume we are operating

at fixed point unless stated otherwise, i.e. Equations 5 and
6 or equivalently Equations 7 and 8 hold. Additionally, we
assume that A is connected. First we have the following
series of lemmas.

Lemma 1. ∀ i we have that si 6= 0.

Proof. If si = 0 for any i, then Equations 5 and 6
immediately imply that pi,1 = pi,2 = 0 which contradicts
si + pi,1 + pi,2 = 1.

Lemma 2. If ∃ i pi,1 = 0 ⇒ ∀ i pi,1 = 0. Similarly
∃ i pi,2 = 0⇒ ∀ i pi,2 = 0.

Proof. If ∃ i pi,1 = 0, then from Equation 5 we have∑
j(Aijpj,1) = 0 (as si 6= 0 from Lemma 1). Clearly, Aij ’s

are positive only for those nodes j which are neighbors of
node i, i.e. for j ∈ NE(i) (and there is at least one such
j as the graph is connected). For these j, as pj,1 can not
be negative (they are probabilities), they have to be zero so
that the above is true. Now we can apply the same argument
we applied for node i in turn for all the neighbors j ∈ NE(i)
and so on. Finally we get that ∀ i pi,1 = 0 as the graph is
connected. We can prove similarly for pi,2.

Lemma 3. The matrix SA is non-negative and irreducible.
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Proof. A is symmetric and irreducible as it is connected.
From Lemma 1 we have that S is a diagonal positive matrix.
Clearly, it follows that S ·A maybe asymmetric but it is a
non-negative and irreducible matrix (intuitively, multiplying
by S preserves the original edges in A).

Lemma 4. The matrix SA has a unique positive real num-
ber (say λ) as its largest eigenvalue (in magnitude). Further
the algebraic multiplicity of λ is 1 and it has a positive eigen-
vector (say ṽ: then all components of ṽ are positive).

Proof. As SA is non-negative and irreducible (Lemma 3),
we can apply the Perron-Frobenius theorem [25]. The lemma
follows directly then.

Lemma 5. There are no positive eigenvectors of SA other
than ṽ (the Perron eigenvector of SA corresponding to the
largest eigenvalue).

Proof. From Lemma 3, it follows that (SA)T is non-
negative and irreducible as well. Moreover, note that the
eigenvalues of any matrix M and MT are the same. Hence,
again applying the Perron-Forbenius theorem to (SA)T , we
have the largest eigenvalue as λ and the corresponding posi-
tive eigenvector as say ũ. From the eigenvalue equation, we
know that ũTSA = λũT .

Now suppose we have another positive eigenvector, say w̃,
corresponding to eigenvalue t of SA (so, SAw̃ = tw̃). Then:

λũT w̃ = ũTSAw̃ = tũT w̃

Hence (λ− t)ũT w̃ = 0. But ũT w̃ 6= 0 as both ũ and w̃ are
positive. Hence t = λ. But λ has multiplicity 1 (Lemma 4)
and hence w̃ = ṽ.

Lemma 6. At fixed point, P̃1 > 0 and P̃2 > 0 both can
not hold unless δ1

β1
= δ2

β2
.

Proof. Together with Lemma 2, Equation 7 implies that
either P̃1 = 0 or it is a positive eigenvector of SA with
eigenvalue δ1/β1. Similarly from Equation 8 (and Lemma 2)

we get that either P̃2 = 0 or it is a positive eigenvector of
SA with eigenvalue δ2/β2. From Lemma 5, the only positive
eigenvector of SA is the one corresponding to the largest
eigenvalue. Hence both P̃1 > 0 and P̃2 > 0 can hold only if
δ1
β1

= δ2
β2

. Otherwise at least one of them is zero.

Assuming the virus strengths are not equal, Lemma 6 im-
plies the following theorem:

Theorem 2. Assuming the virus strengths are not equal,
the system has only the following possible fixed points:

1.
{

P̃1 → 0, P̃2 → 0
}

(i.e. the viruses die-out)

2.
{

P̃1 → perron eigenvector of SA, P̃2 → 0
}

(i.e. only

virus 1 survives)

3.
{

P̃2 → perron eigenvector of SA, P̃1 → 0
}

(i.e. only

virus 2 survives)

We can assert the next lemma immediately:

Lemma 7. The second and third fixed points in Theo-
rem 2 require σ1 > 1 and σ2 > 1 respectively.

Proof. In the second fixed point, virus 2 dies-out and
only virus 1 survives. Hence the system now is equivalent
to a single virus operating on the whole graph under the
standard flu-like SIS model. For this we already know that
the virus should be above the ‘epidemic threshold’ if it has
to survive (and not die-out exponentially quickly) [9, 30].
Hence λβ1/δ1 = σ1 > 1 is necessary for the second fixed
point. Similarly we can prove the case for when virus 2
survives.

Stability Conditions: We first compute the Jacobian at
each of the fixed points.

Lemma 8. The Jacobians at the three fixed points can be
written as below. (each Jacobian is a 2N × 2N matrix, each
sub-matrix block below is a matrix of size N ×N).

1. J1 =

[
β1A− δ1I 0

0 β2A− δ2I

]
2. J2 =

[
β1SA− δ1I− β1diag(AP̃1) −β1diag(AP̃1)

0 β2SA− δ2I

]

3. J3 =

[
β1SA− δ1I 0

−β2diag(AP̃2) β2SA− δ2I− β2diag(AP̃2)

]
Here, in J2, P̃1 is the Perron eigenvector of SA with eigen-
value δ1/β1 (i.e. it satisfies Equation 7 and is non-zero).

Similarly P̃2 in J3.

Proof. Can be computed using standard differentiation.
Details omitted for brevity.

Given the discussion before, we can analyze the corre-
sponding conditions for the fixed point to be hyperbolic sta-
ble attractor.

Lemma 9. The conditions for the fixed points to be hy-
perbolic and stable attractor are:

1. σ1 < 1 and σ1 < 1
2. σ1 > σ2

3. σ2 > σ1

Proof. We prove the conditions for each fixed point sep-
arately below (we omit some details for brevity):

1. The eigenvalues of matrix J1 are simply the eigen-
values of the matrices M1 = β1A − δ1I and M2 =
β2A−δ2I. The real part of all the eigenvalues of these
matrices will be negative if the real part of the largest
eigenvalue is negative (as M1 and M2 are real and
symmetric, all their eigenvalues are real). Hence the
conditions for this are β1λ/δ1 < 1 and β2λ/δ2 < 1,
where λ is the largest eigenvalue of A.

2. We can see that the eigenvalues of the matrix J2 are
either the eigenvalues of matrix M1 = β1SA − δ1I −
β1diag(AP̃1) or the eigenvalues of the matrix M2 =
β2SA− δ2I.

The eigenvalues of M2 are just the eigenvalues of β2SA
subtracted by δ2. From Lemma 4 and Equation 7 we
know that under this fixed point, the largest eigenvalue
of SA is δ1/β1. This implies that R(λSA) < δ1/β1 for
any eigenvalue λSA of SA4. Thus,

R(λM2) = β2R(λSA)− δ2 < β2δ1/β1 − δ2 < 0

4R(x) denotes the real part of x
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where the last step follows if β2/δ2 < β1/δ1. Hence, if
σ2 < σ1, the real part of all the eigenvalues of M2 are
negative.

Consider the matrix D = M1 +MT
1 = β1(SA+AS)−

2δ1I − 2β1diag(AP̃1). Matrix D is clearly real and
symmetric and so has all real eigenvalues. Due to
Lemma 4 we can apply the Perron-Frobenius theo-
rem to SA + AS as well and deduce that its largest
eigenvalue λ1(SA + AS) is positive. Further, from
matrix theory [18, 15], we know that for any real non-
negative matrix C, λ1(C + CT ) ≤ 2λ1(C). Hence 0 <
λ1(SA + AS) ≤ 2λ1(SA) = 2δ1/β1. Again we know
from standard linear algebra [18], that λ1(X + Y) ≤
λ1(X) + λ1(Y) if X and Y are symmetric. Hence,

λ1(D) ≤ β1λ1(SA + AS)− 2δ1 − 2β1λ1(diag(AP̃1))

≤ 2β1δ1/β1 − 2δ1 − 2β1λ1(diag(AP̃1))

≤ −2β1λ1(diag(AP̃1))

< 0

as under this fixed point, diag(AP̃1) is a diagonal ma-
trix with positive entries and hence has all positive
eigenvalues. As D has all real eigenvalues, λ1(D) < 0
implies that it has all negative eigenvalues. The Lya-
punov theorem [17] states that a matrix C is stable
(has R(λC) < 0) if CT + C has all negative eigenval-
ues. Applying it to our case, we can see that matrix
D having all negative eigenvalues implies that M1 is
stable unconditionally under this fixed point.

Finally, as M1 and M2 both (and so J2 as well) have
the real part of their eigenvalues negative under the
condition σ2 < σ1, the fixed point is a hyperbolic sta-
ble attractor if σ2 < σ1.

3. Analogous to the case of the fixed point above.

Proved.

Lemma 9 combined with Lemma 7 allows us to conclude
the following:

Theorem 3. The corresponding conditions for each of
the fixed points to (a) exist, and (b) have stability (i.e. be a
hyperbolic and stable attractor) are:

1. σ1 < 1 and σ2 < 1
(i.e. both are below threshold)

2. σ1 > 1 and σ1 > σ2

(i.e. virus 1 is above threshold and virus 1 strength is
greater than virus 2)

3. σ2 > 1 and σ2 > σ1

(i.e. virus 2 is above threshold and virus 2 strength is
greater than virus 1)

Combining Theorem 2 and Theorem 3, we again have a
result similar to the single virus epidemic threshold - that
viruses die-out if they are below the individual epidemic
threshold (i.e. if βλ/δ < 1). Finally, they also imply our
WTA result (Theorem 1).

5. EXPERIMENTS
We demonstrate our result using (a) simulation experi-

ments on varied datasets; and (b) case studies using real
data in this section.

5.1 Setup
We first briefly describe our experimental setup for the

simulations as well as the case studies.

Simulations: WLOG, in our experiments, we assumed that
the first virus is the stronger virus. We then considered the
following three cases:

BELOW : 1 > β1λ/δ1 = 0.6 > β2λ/δ2 = 0.2
(both viruses below the threshold)

MIXED : β1λ/δ1 = 6 > 1 > β2λ/δ2 = 0.2
(one above and one below the threshold)

ABOVE : β1λ/δ1 = 6 > β2λ/δ2 = 4 > 1
(both above the threshold)

We used the following real-world and synthetic network
datasets for the simulations:

1. AS-OREGON: The Oregon AS router graph which is a
network graph collected from the Oregon router views.
It contains 15,420 links among 3,995 AS peers. More
information can be found from http://topology.eecs.

umich.edu/data.html.
2. PORTLAND: One of the biggest available physical

contact graphs, representing a synthetic population of
the city of Portland, Oregon, USA [27], and has been
used in smallpox modeling studies [10]. It is a social-
contact graph containing more than 31 mil. links
(interactions) among about 1.6 mil. nodes (people).

3. Clique: A fully connected clique of 1000 nodes.
4. Barbell: Two cliques of 500 nodes joined together by

weak edges of weight ε = 0.01 (see Section 4.3 for a
description).

We implemented our competing viruses model SI1I2S as
an event based discrete simulation in C++. We randomly
infect 30 nodes for each of the viruses at the start of any
simulation. All simulations were run over 1000 time steps
and the plots show averaged results from 100 runs.

Case-studies: We collected historical data for ’web-search
interest’ for various competing products from the Google-
Insights website5 which aims to ‘provide insights into broad
search patterns’. This allows us to use the data as a proxy
for product sales/adoption for each product. We used the
following pairs of rival products:

1. Reddit and Digg: Two social news websites, where
users post links to interesting memes/news articles.6

2. Facebook and Myspace: Two social network websites,
where users add their friends and share posts, pictures
etc.7

3. Blu-ray and HD-DVD: Two rival competing standards
of high-density optical media.

The full mutual immunity model doesn’t describe all the
above situations perfectly, but it is a very good approxima-
tion. We understand that not all of the pairs are mutually
exclusive in the strict sense e.g., people can go and put links
on both Digg and Reddit, however, people are unlikely to
be part of both communities as they have to choose a site
while sharing content.

5www.google.com/insights/search/
6www.reddit.com, www.digg.com
7www.facebook.com, www.myspace.com
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(b) MIXED (Time-plot)
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(e) MIXED (Phase-plot)
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(f) ABOVE (Phase-plot)

Figure 4: (a-c) Number of infected vs time plots for simulations on the AS-OREGON network for different
scenarios. (d-f) Corresponding Phase plots (scatter plot of number of infected nodes by virus 1 (y-axis) and
number of infected nodes by virus 2). Stable fixed points are marked by bold circles, unstable by hollow
circles. Clearly, the stronger virus wins (as long as it is above threshold) and the weaker dies-out completely
as our result predicted.

5.2 Simulation Results
Figures 4 and 5 demonstrate our results. In short, the

plots agree exactly with our result, as expected.
Figure 4 shows the Time-plots and Phase-plots for simu-

lations on the AS-OREGON graph for our three scenarios
as discussed before in the setup. The time-plots show the
Number of nodes Infected vs Time for each of the viruses
(red for the weaker virus, green for the stronger one). The
phase plot is the scatter plot of number of infected nodes
by the stronger virus on the y-axis and number of infected
nodes by the weaker virus on the x-axis. Thus a phase plot
shows the trajectory of the simulation in the 2-d plane. The
stable points in each scenario are marked with solid circles.

In the BELOW case, we expect that both of them die-
out. This is borne out by both the time and phase plots
(Figures 4(a) and (d)). Point FP1(0, 0) is the only stable
fixed point in this case and hence the system converges to it
very quickly (see the phase plot). On the other hand, when
the stronger virus is above threshold (MIXED) we can see
that it takes-over and the other virus dies-out (Figures 4(b)
and (e)). In this case, point FP2 is stable and attracting
while FP1 becomes unstable. As a result, we converge to
the steady state where only the stronger survives. Finally, in
case ABOVE, when each could have dominated in isolation,
the stronger virus clearly wins and wipes-out the weaker
virus (Figures 4(c) and (f)). Here, FP2 is again stable while
the other fixed points are unstable. Moreover, note that the
stronger virus reaches the same steady-state as in MIXED.
This agrees with our analysis as well (see Lemma 7): in
both scenarios, the stronger virus will reach the same fixed-
point as it would have if operating in isolation, without the
presence of a competitor.

Similarly, Figure 5 shows the phase-plots for simulations

on the other graph datasets - PORTLAND, Clique and Bar-
bell. For lack of space, we just show the plots for case
ABOVE. As before, the stronger virus wins and the weaker
virus dies-out completely, no matter the network, in perfect
agreement with our result (Theorem 1).

5.3 Case-Studies using Real Data
Figure 6 shows the historical data we collected from Google-

Insights. In short, they provide corroboration to the WTA
phenomenon in real-world as well.

Figures 6(a-c) show the web-search interest vs time for
the three pairs of competitors we discussed before in the
setup. Figures 6(d-f) show the corresponding phase-plots
(the final data-point is marked by a diamond). Firstly, as
it is real data, due to various reasons they do show signifi-
cant deviations over the smooth steady states observed from
our models (e.g., the spikes in Figure 6(c) denote Christmas
shopping sales). Nevertheless, they broadly give positive
evidence for the WTA result e.g., in (a-b) and (d-e), even
though Digg and MySpace had a head-start and even dom-
inate for a while, the stronger product (Reddit and Face-
book) eventually takes-over. The phase plots also show the
trajectories in effect similar to the ones found in our simu-
lations. Clearly, in all the plots we can see that the even-
tual winner and dominant competitor (Reddit, Facebook,
Blu-ray) almost completely wipes-out the weaker competi-
tor, just as our result predicts.

6. DISCUSSION
There are several subtle points, that we deferred until now,

for clarity of exposition. Specifically, here we discuss the
following issues:
Question: Explain the counter-examples, of ‘winner takes
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(c) Barbell

Figure 5: Phase plots (scatter plot of number of infected nodes by virus 2 and number of infected nodes
by virus 1) plots for simulations on (a) the PORTLAND network, (b) a clique and (c) a barbell graph for
scenario ABOVE. Again, stable fixed points are marked by bold circles and unstable fixed points by hollow
circles (FP3 not shown in (a) for sake of clarity of the trajectory). The weaker virus tries to dominate (note
the bulge), but it dies-out completely and the stronger virus wins, as our result predicted.

all’. If ‘winner takes all’, how come there are competing
products where the weaker one still has a non-trivial market
share, like ‘Windows’, ‘Mac-os’ (and ‘Linux’)?
Answer: Not ‘level-fields’; or not enough time. There are
indeed numerous cases where two (or more) competing prod-
ucts or ideas, co-exist. For example, in the OS ‘wars’, MS-
windows has a large market share, with mac-OS having a
smaller, but near-constant market share. There are several
settings that could cause such deviations.

• One is that we are violating our assumption of ‘fair-
play’, e.g., some nodes (like enthusiastic AppleTM fans)
exhibit much lower infection probability β, or even zero
for one of the viruses. Thus by catering to just that
niche where it is much stronger, the competitor can
survive.
• A second cause is weak connectivity, like a bar-bell

graph with a narrow bridge, and not enough time to
reach steady-state.
• A third cause is viruses of near-equal strength. We

omit the simulation results here, but similar-strength
viruses take too long to reach WTA. This is analogous
to the case of two near-equal-strength tennis players,
that need several games, and several tie-breakers, be-
fore a winner emerges.

Question: Has this WTA phenomenon appeared in other
settings?
Answer: Yes, with simulation results. In epidemiology
studies, WTA is referred to as ‘competitive exclusion’ e.g.
see [7, 8, 1, 2]. However, they typically did simulations, or
they only studied homogenous or very structured topologies
like cliques.

Question: How about other propagation models (SIR etc)?
Will WTA, then?
Answer: We conjecture that the answer is ‘yes’. The full
analysis for SIR (= life-long immunity, like mumps) SIRS (=
long, but not permanent, immunity) and more, are the focus
of our ongoing research. We conjecture that similar results
may hold, too, extrapolating from the results of (Prakash
et al. [30]): that work showed that, for a single virus, the
epidemic threshold has the same form, for almost any virus
propagation model.

Question: Will WTA hold, under partial mutual immu-
nity?
Answer: Future work - no conjectures. In this work, we
assume full mutual exclusion, that is a given node will have
at most one of the two viruses/products (iPhone/Android),
at any given point in time, but not both. There are mar-
keting, and biological settings that a person may have both
products/viruses. Will WTA hold, then? This seems like a
difficult question, and left for future work. We suspect that
the answer will not be a simple ‘yes’ or ‘no’.

7. CONCLUSIONS
In summary, we tackled the setting of two competing

products (or viruses or ideas etc.) spreading over a net-
work and studied the problem of what happens in the end
(i.e. in the steady state). In addition to problem formula-
tion and getting ecological concepts to web-like phenomena,
the main contributions of our work are as follows:

1. WTA Result and Proof : We provided a theoretical
analysis of the propagation model for arbitrary graph
topology, proving that the ‘winner-takes-all’ i.e. the
stronger virus dominates and wipes-out the weaker
virus (if it is above threshold). See Theorem 1.

2. Experiments and Case-studies: We also demonstrated
our result using extensive simulations on real and syn-
thetic networks showing that they match exactly with
our predictions. Moreover, using case-studies of his-
torical data of competing products (Blu-ray/HD-DVD,
Facebook/MySpace, Reddit/Digg), we provided posi-
tive evidence of WTA in real-life.

Acknowledgments: This material is based upon work sup-
ported by the Army Research Laboratory under Cooperative
Agreement No. W911NF-09-2-0053, the National Science
Foundation under Grant No. IIS-1017415, and the National
Institute of General Medical Sciences under MIDAS grant
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