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ABSTRACT
Recommender systems traditionally assume that user pro-
files and movie attributes are static. Temporal dynamics are
purely reactive, that is, they are inferred after they are ob-
served, e.g. after a user’s taste has changed or based on hand-
engineered temporal bias corrections for movies. We propose
Recurrent Recommender Networks (RRN) that are able to
predict future behavioral trajectories. This is achieved by
endowing both users and movies with a Long Short-Term
Memory (LSTM) [14] autoregressive model that captures
dynamics, in addition to a more traditional low-rank factor-
ization. On multiple real-world datasets, our model offers
excellent prediction accuracy and it is very compact, since
we need not learn latent state but rather just the state tran-
sition function.

1. INTRODUCTION
The design of practical recommender systems is a well-

established and well-studied subject. A common approach
is to study problems of the form introduced in the Net-
flix contest [4]. That is, given a set of tuples consisting of
users, movies, timestamps and ratings, the goal is to find rat-
ings for alternative combinations of the first three attributes
(user, movie, time). Performance is then measured by the
deviation of the prediction from the actual rating.

This formulation is easy to understand and it has led to
numerous highly successful approaches, such as Probabilis-
tic Matrix Factorization [19], nearest neighbor based ap-
proaches [20], and clustering [5]. Moreover, it is easy to de-
fine appropriate performance measures (deviation between
rating estimates and true ratings over the matrix), simply
by selecting a random subset of the tuples for training and
the rest for testing purposes.
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Figure 1: Accuracy and model size of RRN for the
6-month Netflix dataset, compared to [19], [16], and
[21]. Our model achieves excellent prediction accu-
racy by being more flexible and dynamic than prior
methods, while being comparable in model size.

Unfortunately, these approaches are lacking when it comes
to temporal and causal aspects inherent in the data. The
following examples illustrate this in some more detail:

Change in Movie Perception Plan 9 from Outer Space
has achieved cult movie status by being arguably one
of the world’s worst movies. As a result of the so-
cial notion of being a movie that is so bad that it is
great to watch, the perception changed over time from
a truly awful movie to a popular one. To capture this
appropriately, the movie attribute parameters would
have to change over time to track such a trend. While
maybe not quite as pronounced, similar effects hold for
movie awards such as the Oscars. After all, it is much
more challenging to hold a contrarian view about a
critically acclaimed movie than about, say, Star Wars
1, The Phantom Menace.

Seasonal Changes While not quite so extreme, the rel-
ative appreciation of romantic comedies, Christmas
movies and summer blockbusters is seasonal. Beyond
the appreciation, users are unlikely to watch movies
about overweight bearded old men wearing red robes
in summer.
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User Interest User’s preferences change over time. This
is well established in online communities [8] and it
arguably also applies to online consumption. A user
might take a liking to a particular actor, might dis-
cover the intricacies of a specific genre, or her interest
in a particular show might wane, due to maturity or
a change in lifestyle. Any such aspects render exist-
ing profiles moot, yet it is difficult to model all such
changes explicitly.

Beyond the mere need of modeling temporal evolution,
evaluating ratings with the benefit of hindsight also violates
basic requirements of causality. For instance, knowing that a
user will have developed a liking for Pedro Almodóvar in one
month in the future makes it much easier to estimate what
his opinion about La Mala Educación might be. In other
words, we violate causality in our statistical analysis when
we use future ratings for the benefit of estimating current
reviews. It also makes it impossible to translate reported
accuracies on benchmarks into meaningful assessments as to
whether such a system would work well in practice. While
the Netflix prize generated a flurry of research, evaluating
different models’ success on future predictions is hindered by
the mixed distribution of training and testing data, as seen
in Figure 2. Rather, by having an explicit model of profile
dynamics, we can predict future behavior based on current
trends.

A model capable of capturing the actual data distribution
inherent in recommender systems needs to be able to model
both the temporal dynamics within each user and movie, in
addition to capturing the rating interaction between both
sets. This suggests the use of latent variable models to infer
the unobserved state governing their behavior. See Figure 3
for an example of such a model. The key difference be-
tween this and temporal models such as the ones proposed
by [16] is that [16] uses a specific parametrization to inter-
polate temporal behavior. Instead, we use a nonparametric
model that is able to extrapolate behavior into the future by
learning the inherent user and movie dynamics. This makes
it more adaptive to the true dynamics and less demanding
on the statistical modeling skills of the experimenter.

Given the overall structure of the model, we are at liberty
to posit a specific type of state for the latent variable. Pop-
ular choices are to assume a discrete latent state, as used
e.g. when modeling web browsing behavior [9]. Likewise, we
could resort to spectral methods [22, 1] or nonparametric
estimators, such as Recurrent Neural Networks (RNNs). To
address the vanishing gradient problem we resort to Long
Short-Term Memory [14] in our model. Our contributions
are as follows:

Nonlinear nonparametric recommender systems have
proven to be somewhat elusive. In particular, nonlin-
ear substitutes of the inner product formulation showed
only limited promise in our experiments. To the best of
our knowledge this is the first paper addressing movie
recommendation in a fully causal and integrated fash-
ion. That is, we believe that this is the first model
which attempts to capture the dynamics of both users
and movies. Moreover, our model is nonparametric.
This allows us to model the data rather than having
to assume a specific form of a state space.

Recurrent Recommender Networks are very concise since
we only learn the dynamics rather than the state. This
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Figure 2: Data density in the Netflix contest. Note
that while the test data is substantially overweighted
to recent ratings, the training set is much more uni-
formly spaced out. This illustrates that the problem
posed in the contest is much more one of interpolat-
ing ratings with the benefit of hindsight rather than
predicting future user behavior.

is one of the key differences to typical latent variable
models where considerable effort is spent on estimat-
ing the latent state. In this aspect it closely resembles
the neural autoencoder for recommendation of [21]. In
fact, one could view the latter as a special case of our
model.

Experiments show that our model outperforms all oth-
ers in terms of forward prediction, i.e. in the realistic
scenario where we attempt to estimate future ratings
given data that occurred strictly prior to the to-be-
predicted ratings. We show that our model is able to
capture exogenous dynamics (e.g. an Oscar award) and
endogenous dynamics (e.g. Christmas movies) quite
accurately. Moreover, we demonstrate that the model
is able to predict changes in future user preferences
accurately.

2. RELATED WORK

2.1 Recommender Systems
Basic recommender systems ignore temporal information.

This is a reasonable approximation, in particular for the
Netflix contest, since opinions about movies and users do
not change too rapidly and too dramatically in most cases.

Probably one of the most popular variants is Probabilis-
tic Matrix Factorization (PMF) [19]. Albeit simple, PMF
achieves robust and strong results in rating prediction. It is
the prototypical factorization model where preferences are
attributed to users and movies alike. Furthermore, imple-
mentations such as LIBPMF [24] are readily available, which
make it easy to replicate experiments. Our proposed model
uses the same factorization as PMF to model stationary ef-
fects. In this sense, it is a strict generalization.

Temporal aspects in recommendation were discussed in
great length in Koren’s prize-winning paper [16]. It proposed
TimeSVD++, a temporal extension of the SVD++ matrix
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Figure 3: Left: time-independent recommendation
model. User and movie parameters are stationary,
ratings are drawn from p(rij |ui,mj). Right: time-
dependent recommendation model. Here both user
and movie models follow a Markov chain and the
ratings are drawn from p(rij |uit,mjt). Note that the
plate notation is not entirely suitable for captur-
ing the additional information of which (user,movie)
pairs are rated and when.

factorization algorithm. The key innovation here is to use a
separate model to capture temporal dynamics, i.e. to allow
for explicit temporal bias in the data. This allowed [16] to
capture temporal inhomogeneity due to a change in rating
labels and popularity changes in an integrated fashion.

Note that the features of TimeSVD++ are hand engi-
neered, relying on intimate knowledge of the dataset. This
makes the model difficult to port to new problems, e.g. from
movies to music or books. Secondly, the model explicitly
does not attempt to estimate future behavior, particularly
because the Netflix competition did not require it, as seen
in Figure 2. Instead, it only interpolates between past obser-
vations. In contrast, our model does not depend on feature
engineering and is able to predict future ratings without the
(unrealistic) assumption of having seen future user behavior.

Probably most closely related to our approach is AutoRec
[21], one of the few Neural Networks models for recommen-
dation. It uses the fact that matrix factorization can be
viewed as an encoding problem: find a low-dimensional rep-
resentation of a user’s activity such that we can reconstitute
all of a user’s ratings from this vector. Given a set of movie
attributes, this is achieved in the linear case by projecting
a user’s activity onto a lower-dimensional space and then
projecting back from it (the proof is basic linear algebra).

AutoRec extends this idea from a linear autoencoder to
a nonlinear one. In it, ratings are first aggregated by a
lower-dimensional mapping and then processed by a number
of intermediate compression and decompression layers as is
common in autoencoders [3]. It is among the best neural
network models so far in terms of rating prediction, and
achieves state-of-the-art results on several datasets.

2.2 Recurrent Deep Networks
One of the key challenges in a graphical model described

in Figure 3 is that it requires us to infer future states given
observations, e.g. via message passing or particle filtering.
This is costly and fraught with difficulty, since we need to

〈new〉 yi,t−2 yi,t−1 user
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Figure 4: Recurrent Recommender Networks. We
assume individual recurrent networks to address the
temporal evolution of user and movie state respec-
tively. The state evolution for a user depends on
which movies (and how) a user rated previously.
Likewise, a movie’s parameters are dependent on
the users that rated it in the previous time interval
and its popularity among them. To capture station-
ary attributes we use an additional (conventional)
set of auxiliary parameters ui and mj for users and
movies respectively.

match the emission model (of ratings) to the latent state. In
other words, the only way to feed information about ratings
back into the latent state is via the likelihood p(rij |uit,mjt).
Common strategies for achieving this are via message pass-
ing or via particle filtering, i.e. via Sequential Monte Carlo
sampling [2]. They are approximate and can be nontrivial
to implement accurately at scale.

Alternatively we can simply learn the mapping as part of
a nonparametric state update, i.e. via a Recurrent Neural
Network (RNN). See [12] for an extensive overview and tu-
torial. The key idea is to use a latent variable autoregressive
model as follows:

ẑt+1 = f(ht, zt) and ht+1 = g(ht, zt+1).

Here zt denotes the observation at time t, ẑt is the associ-
ated estimate, and ht is the latent state. While the general
functional form is well established [18] (e.g. the venerable
Kalman Filter satisfies this condition), it is the use of non-
linearities and of tools to address stability and vanishing
gradients that make the expression particularly effective.

A popular choice is the Long Short-Term Memory (LSTM)
[14]. It captures temporal dynamics and we use it as a build-
ing block for a collaborative filtering system. The overall
model is shown in Figure 4. The state updates satisfy the
following operations:

[ft, it, ot] = σ [W [ht−1, zt] + b] (1)

lt = tanh [V [ht−1, zt] + d] (2)

ct = ft · ct−1 + it · lt (3)

ht = ot · tanh(ct) (4)

where ft, it and ot denote forget gate, input gate, and out-
put gate respectively. They control how information flows
through the sequence. For simplicity, in the following sec-



tions we use ht = LSTM(ht−1, zt) to denote these opera-
tions.

Note that LSTMs are not the only option. For instance,
[7] propose the use of a Gated Recurrent Unit (GRU). It
is very similar in spirit, albeit computationally cheaper and
often similar in its results. For the purpose of the current
paper we limit ourselves to LSTMs since they are slightly
more general. [13] propose to use RNN for session-based
recommendation, but it does not consider personalization,
nor does it attempt to model user or item state transitions.

3. MODEL
In our approach we use LSTM Recurrent Neural Networks

to capture temporal dependencies for both users and movies.
This way we are able to incorporate past observations and
to predict future trajectories in an integrated manner. De-
note by ui and mj latent attributes for user i and movie
j respectively. To deal with temporal dynamics we endow
both with a time index, i.e. uit and mjt. Now all that is
required is to define update functions. We use

r̂ij|t = f(uit,mjt) and ui,t+1 = g(uit, {rij|t})
mj,t+1 = h(mjt, {rij|t}),

where r̂ij|t denotes the predicted rating for user i on movie
j, and rij|t is the actual rating, at time step t. The func-
tions f, g and h are learned such that we can infer a new
user’s state directly without need for further optimization.
Rather than solving the optimization problem to find the
user parameters, we solve an optimization problem to find
the functions that find the user parameters. This aspect is
similar to the deep autoencoder of [21] who learn an en-
coding function for past ratings. The key difference in our
context is that we learn a function that sequentially updates
scores and that is able to make forward predictions one set
of ratings at a time.

3.1 User and Movie State
For clarity we illustrate the idea assuming a user-state

RNN, as the movie-state RNN is defined in the same man-
ner. Given a dataset of M movies, we denote by xt ∈ RM
the rating vector for a given user at time t, where xtj = k
if the user rated movie j with score k at time step t and
xtj = 0 otherwise. Moreover, we denote by τt the wallclock
at time step t and we use 1newbie = 1 to indicate that the
user is new.

yt := Wembed [xt, 1newbie, τt, τt−1] , (5)

where Wembed is the transformation to be learned to project
source information into embedding space. This yields yt
which serves as the input to an LSTM at step t. That is, we
have the following model

ut := LSTM(ut−1, yt) (6)

Note that the steps where a user has not rated any movies
are not included in the RNNs to save computations. Nonethe-
less, the inclusion of the wallclock gives the model the infor-
mation needed to account for the no-rating steps and addi-
tionally capture effects such as rating scale change or movie
age. See Section 4 for more details regarding a user model.
To distinguish different users (and movies alike) we use the
additional index i to denote user i when dealing with uit.
Likewise, for movies we use mjt for movie j at time t.

3.2 Rating Emissions
Even though the user and movie states can be time-varying,

we conjecture that there is still some stationary components
that encode fixed properties such as the profile, long-term
preference of a user, or the genre of a movie. To accomplish
this, we supplement the time-varying profile vectors uit and
mjt with stationary ones ui and mj respectively. We thus
propose the rating being a function of both dynamic and
stationary states, i.e.

r̂ij|t = f(uit,mjt, ui,mj) := 〈ũit, m̃jt〉+ 〈ui,mj〉 (7)

where ũit and m̃jt are affine functions of uit and mjt respec-
tively. That is, we have

ũit = Wuseruit + buser and m̃jt = Wmoviemjt + bmovie

In short, the standard factorization accounts for stationary
effects, while we use LSTMs for longer-range dynamic up-
dates. This makes our model a strict superset of the more
commonly used matrix factorization recommender systems.

3.3 Rating Prediction
Different from traditional recommender systems, in pre-

diction time we use the extrapolated states instead of the
estimated states for rating prediction. That is, we take the
latest observations as input, update the states and make
predictions based on the newly updated states. In this way
we naturally take the causal effects brought by the previous
ratings into account. For example, we become able to ad-
dress hedonic adaptation [11], which in the context of movie
recommendation, refers to the reduction in the level of satis-
faction with a movie after watching another satisfying movie,
or similarly for disappointing movies.

3.4 Inference
The optimization objective is to find parameters that yield

predictions that are close to the actual ratings, i.e.

minimize
θ

∑
(i,j,t)∈Itrain

(
rij|t − r̂ij|t(θ)

)2
+R(θ) (8)

Here θ denotes all parameters to be learned, Itrain is the
set of observed (user, movie, timestamp) tuples in train-
ing set, and R denotes some regularization function. While
the objective function and building blocks in our model are
quite standard, a naive application of backpropagation can-
not solve this problem easily. The key challenge is that
each individual rating depends on both user-state RNN and
movie-state RNN. Backpropagation through 2 sequences for
every rating is computationally prohibitive. We can allevi-
ate the problem a bit by back-propagating gradients from
all the ratings of a user (movie) at once, but still, each rat-
ing would depend on its movie (user) state, and in turn, the
movie’s (user’s) full sequence.

Instead, we propose an alternating subspace descent strat-
egy that does not suffer from this issue. That is, we still
back-propagate the gradients of all the ratings of a user at
once to update user-sequence parameters, but now we as-
sume movie states are fixed, so there is no need to propa-
gate gradients into those movie sequences. Then we alter-
nate between updating user sequences and updating movie-
sequences. This way, we can perform only one time of
standard feed-forward and back-propagation for each user
(movie). This strategy is well known as subspace descent.



Dataset IMDb
Netflix Netflix Netflix

6 months 1 year full

Users 440.8k 311.3k 345.9k 477.4k
Items 114.3k 17.7k 16.9k 17.8k

Train size 1.4M 13.7M 41.5M 98.1M
Test size 29.6k 2.1M 3.9M 2.3M

Train data 7/98-12-12 6/05-11/05 6/04-5/05 12/99-11/05
Test data 1/13-9/13 12/05 6/05 12/05

Sparsity 0.0028% 0.25% 0.7% 1.2%

Table 1: IMDb and different splits on the Netflix
dataset used in experiments. To evaluate the ability
to model state transition dynamics, users and items
not shown in the training set are removed from the
testing set.

4. EXPERIMENTS
We present both quantitative and qualitative analysis of

our model. We demonstrate RRN’s ability to automatically
model a variety of temporal effects and make accurate pre-
dictions to future ratings. In particular, we show that the
ratings are the best currently available (for models satis-
fying realistic causality conditions). Moreover, they accu-
rately reproduce the temporal effects that are usually hand-
engineered in temporal recommender systems.

In order to study the effectiveness modeling temporal dy-
namics, we evaluate our model on the well-understood dataset
from Netflix contest and the IMDb dataset, first used in
[10]. The IMDb dataset comprises of 1.4M ratings collected
between July 1998 and September 2013, and the Netflix
dataset consists of 100M ratings collected between Novem-
ber 1999 and December 2005. Each data point is a (user id,
item id, time stamp, rating) tuple with a time stamp gran-
ularity of 1 day. To better understand different aspects of
our model, we test our model on several different time win-
dows with different training and testing period. A detailed
summary is shown in Table 1. Note that we split our data
based on time to simulate the actual situations where we
need to predict future ratings instead of interpolate previ-
ous ratings. Ratings from the testing period are evenly split
into validation and testing sets.

4.1 Setup
We found that our model is able to achieve good accu-

racy even with a very small amount of parameters. In the
following experiments, we use a single-layer LSTM with 40
hidden neurons, 40-dimensional input embeddings, and 20-
dimensional dynamic states. We use 20-dimensional and
160-dimensional stationary latent factors for Netflix and IMDb
dataset respectively. Our model is implemented on MXNet
[6], an open-source deep learning framework.

We use ADAM [15] to optimize neural network parameters
and stochastic gradient descent (SGD) to update stationary
latent factors. Architecture and learning algorithm parame-
ters are selected by cross-validation. We found that we can
generally obtain better results if we first train stationary
states only, and then jointly train the full model. In the fol-
lowing experiments, stationary latent states are initialized
by a small pre-trained PMF and a U-AutoRec model for
Netflix and IMDb experiments respectively. Wallclock time
τts are rescaled to have zero mean and unit variance.

We compare RRN against the following state-of-the-art
models.

PMF [19] Albeit simple, PMF achieves robust and strong
results in rating prediction. As our model adopts the
same factorization as PMF to model stationary ef-
fects, comparing to PMF directly shows the benefits
of modeling temporal dynamics with our model. We
use LIBPMF [24] in experiments. Grid search of reg-
ularization parameter over λ ∈

{
100, . . . , 10−5

}
and

factor size over k ∈ {20, 40, 80, 160} is performed to
select the best parameters.

TimeSVD++ [16] TimeSVD++ is one of the most suc-
cessful models to capture temporal dynamics and has
shown strong results at Netflix contest. The imple-
mentation in GraphChi [17] is used in experiments.
Similarly, regularization parameter and factor size are
selected by grid-search over λ ∈

{
100, . . . , 10−5

}
and

k ∈ {20, 40, 80, 160}.
AutoRec [21] learns an autoencoder that encodes each movie

(or user) into lower-dimensional space and then de-
codes to make predictions. It is among the best neu-
ral network models so far in terms of rating predic-
tion, and achieves state-of-the-art results on several
datasets. We use the software provided by the authors
to evaluate AutoRec. Parameters that yield the best
performance in original [21] are used in our experi-
ments (latent state dimension k = 500).

4.2 Rating Prediction

PMF I-AR U-AR T-SVD RRN

IMDb 2.3913 2.0521 2.0290 2.0037 1.9703

Netflix 6 months 0.9584 0.9778 0.9836 0.9589 0.9427

Netflix full 0.9252 0.9364 0.9647 0.9275 0.9224

Table 2: RRN outperforms competing models in
terms of RMSE. On Netflix datasets, a RRN
with only 20-dimensional stationary factors and
40-dimensional embedding is enough to outper-
form PMF and TimeSVD++ of dimensionality
160 and AutoRec with 500-dimensional embed-
dings. Dimensionality and regularization parame-
ter of PMF and TimeSVD++ are selected by cross-
validation. (I-AR: I-AutoRec, U-AR: U-AutoRec,
T-SVD: TimeSVD++.)

We evaluate the performance of rating prediction based
on standard root-mean-square error (RMSE). A summary of
results on different datasets is shown in Table 2. Here we use
a time step granularity of 2 months for full Netflix and IMDb
and 1 day/7 days (users/movies) for the 6-month Netflix
dataset. See Section 4.6 for discussions on the choice of time
step granularities. We run our model for 10 epochs. After
every epoch, RMSE is computed. We report the RMSE on
the testing set for the model that gives the best results on
validation set.

Accuracy and Size.
Our model achieves the best accuracy on all datasets among

all compared methods including the best neural network model
and the best temporal model available. Compared to PMF,
RRN offers an improvement of 1.7% on IMDb and 1.6% on



6-month Netflix dataset. Note that the RMSEs presented
in Table 2 are higher than those achieved in Netflix contest
because we test on purely future ratings.

In addition, our model is very concise, as we can store the
transition function instead of the actual states to model tem-
poral dynamics. On the Netflix datasets, while outperform-
ing all baseline models, RRN is 2.7 times smaller than PMF
and TimeSVD++, and 15.8 times smaller than I-AutoRec.
Specifically, a RRN with 40-dimensional embeddings and 20-
dimensional stationary states is enough to outperform PMF
and TimeSVD++ of dimensionality 160 and AutoRec with
500-dimensional embeddings. Figure 1 shows the model size
and RMSE on the 6-month dataset. For IMDb, RRN is
of comparable size to PMF, TimeSVD++ and U-AutoRec,
and is much smaller than I-AutoRec; this is because RRN
uses the same dimension stationary states as the factoriza-
tion models and includes a relatively small model to capture
the dynamics. We see clear advantage of RRN in terms of
flexibility and thus accuracy, without sacrificing on size1.

Robustness.
While other methods swap rankings across different datasets,

RRN shows consistent improvements. In particular, we see
that for PMF and Time-SVD++ the relative improvement
decreases on IMDb, as it is 90 times sparser than the 6-
month Netflix dataset as shown in Table 1. On the other
hand, RRN does not suffer from sparsity. We conjecture
that this is due to the fact that our model learns the func-
tions that find parameters instead of learning the parame-
ters directly, so the statistical strength are shared across all
data points. In dense settings, RRN still achieves a smaller
size and comparable or better accuracy. In addition, PMF
performs much worse than Time-SVD++ on the 14-year-
spanning IMDb dataset. This again stresses the need for
modeling temporal dynamics.

4.3 Temporal Dynamics

Exogenous Dynamics on movies.
The goal is to understand how our model reacts to exoge-

nous effects, such as awards. Specifically, we run RRN on
the 1-year dataset with a time step granularity of a month,
and see how the average predicted ratings evolve along the
sequence. The average ratings are calculated over 1000 ran-
domly sampled users, who might or might not have rated
the movie at that time step. This represents the average
predicted rating for a movie, and avoids bias by who chose
to rate the movie at that time. Figure 5 shows average
predicted ratings on award winners. We see when a movie
receives awards or nominations, there is a clear rise in pre-
dicted ratings, which matches the data trend. This confirms
our expectation that RRN should adapt automatically to
exogenous changes and adjust predictions.

Endogenous Dynamics on movies.
In addition to exogenous events that cause perception

changes, a movie can experience variations over time for
endogenous reasons. To understand how RRN models these
effects, we test on the full 6-year dataset with a time step
granularity of 2 months. Experiments are conducted in the

1 Here we consider each factor to be a 32-bit floating point
number in calculating model size.
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Figure 5: Ratings for a number of prize winning
movies relative to a general baseline. We sam-
pled 1,000 and tracked how the same users would
have rated the same movie as a function of time.
Awards lead to a short-time positive effect until a
user’s default preferences prevail again (Netflix does
not display awards in its user interface). For ref-
erence, Golden Globe nominees were announced on
12/13/04, the award ceremony was held on 1/16/05.
Oscar nominees were announced on 1/25/05 and the
award ceremony followed on 2/27/05.

same way as the previous experiment, but considering the
fact that most users are only active on the system for some
time, here for each time step we sample a different set of
5,000 users that are active at that time. A user is consid-
ered active if she rated any movie in the time step. We look
at the movies with big change in ratings and observe how
RRN models their dynamics2. First of all, we observe the
“age effect”, as pointed out in [16]. That is, a movie’s rating
tends to decrease slightly in the first year after its release,
and then increase with age. From Figure 6 we see our model
clearly captures this “age effect” and adapts effectively. In
addition, we also notice how RRN models movies with dif-
ferent reception differently. Figure 7 shows the predicted
ratings for Oscar best picture nominees and Golden Rasp-
berry worst picture nominees. We see movies within each
group show consistent patterns that match intuitive sense.
Raspberry nominees initially experience a dip and then the
average ratings increase, while Oscar nominees rise at the
beginning and then stay relatively stable. Note that these
patterns are more than a simple shift that can be captured
by a bias term.

User Interface Changes.
As pointed out in [16], there is a change of rating scale in

early 2004. Clearly systems that fail to take this into account
will have inferior estimation accuracy. We test our model on

2 Movies that joined the dataset before 2004, have at least
1000 ratings every year, and have a fluctuation greater than
0.5 are selected. The fluctuation is defined as the difference
between the average rating of the highest-rated year and
that of the lowest-rated year. This procedure results in a
set of 256 movies.
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Figure 6: Average predicted ratings as a function
of movie age. Our estimates are consistent with the
fact a movie’s impression tends to degrade initially
after its release. Subsequently it may achieve cult
status (relatively speaking) and its public perception
increases over time.

full Netflix dataset with a time step granularity of 2 months,
and look at the average rating that each time step generates
for randomly selected users. Note that since we are calculat-
ing the average prediction over random users over time, we
observe how our model’s dynamic embeddings change over
time. Figure 8 shows the average predicted ratings grouped
by movie release year. We see for all the curves, there is a
clear rise in early 2004 that matches the scale change. This
is in contrast to PMF, for which embeddings are static and
thus average predictions over time are constant.

4.4 Cold-Start
To understand the strength and weakness of our model, we

perform a careful comparison to the stationary PMF model
on users and movies for which we have few ratings in our
training dataset. As can be seen in Figure 9, RRN improves
over PMF for users with few ratings in the training data and
provides the greatest improvements for users for which we
observe very few ratings. In Figure 10, we find that RRN
still consistently provides improvements for movies with few
ratings, but the relationship between improvement and the
number of observations is far more noisy. This is likely due
to the relatively few ratings in the test set for these movies.

4.5 Incorporate New Data without Re-Training
One advantage of estimating the transition function in-

stead of the state itself is that even without re-training, we
are able to incorporate the information from the newly ob-
served ratings to update states (by simply feeding the new
ratings into the network). Here we evaluate this strategy on
the 6-month Netflix dataset. Specifically, we extrapolate the
states using the ratings observed from the first testing time
step, and use the extrapolated states to predict ratings in the
second time step. We test on movies with different levels of
rating fluctuations. Fluctuation is defined as the difference
between the average rating of the highest-rated time-step
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Figure 7: Average predicted ratings for Oscar best
picture nominees (in blue) and Golden Raspberry
worst picture nominees (in red). Movies within each
group show consistent patterns that match intuitive
sense. Note that these patterns are more than a
simple shift that can be captured by a bias term.
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Figure 8: Average predicted ratings, grouped by re-
lease year. Note the spike between 2003 and 2004,
i.e. the time when the labels of star ratings on the
Likert scale were changed.

and that of the lowest-rated time-step3. RMSE improve-
ments from this strategy are summarized in Figure 11. We
observe that while very small fluctuations are not captured
by our pre-trained model, large fluctuations are successfully
described, leading to significant improvements in prediction
accuracy. That is, using RRN not only relieves the need of
frequent expensive re-training, but also opens a new avenue
to provide real-time recommendations [23].

3 To eliminate the noise when estimating fluctuations, we
remove movies with less then 100 ratings within the testing
month. This results in 3,552 movies and 1,808,654 ratings
tested in this experiment.



Figure 9: Gain of RRN over PMF in RMSE. RNN
achieves a 2.5% improvement for users with only 1
training rating. Users with few training data benefit
the most. In fact, there are 37k users with only 1
training rating and only 5.2k users with 30 training
ratings. Marker size denotes user counts.

Figure 10: Gain of RRN over PMF in RMSE.
Movies with more than 10 training ratings show con-
sistent improvements. Marker size denotes movie
counts.

4.6 Time Step Granularity and Sensitivity
A smaller time-step granularity allows the model to up-

date states frequently and capture short-term effects. How-
ever, it also results in longer LSTM sequences, that are com-
putationally more expensive to train. Table 3 summarizes
the training time and RMSE over different granularities on
the 6-month dataset. We see a trade-off between RMSE and
training-time here. One can obtain better accuracy at the
cost of longer training time. Note that the performance is
not sensitive to granularity, and even the worst of these RM-
SEs outperforms all the baseline models. This could be due
to the fact that RRN is completely general, in the sense that
it assumes no specific form or distribution of data.
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Figure 11: RMSE improvement gained from feed-
forwarding ratings without re-training. We see clear
improvements for movies with big fluctuations.

Granularity (user/movie) RMSE Time (user/movie)

1 day / 1 day 0.9440 9,235 / 7,225

1 day / 7 days 0.9427 8,587 / 4,478

7 days / 1 day 0.9459 6,845 / 7,219

7 days / 7 days 0.9440 6,800 / 4,298

Table 3: RMSE and training-time trade-off for dif-
ferent time step granularities. Training-time (in
seconds) is measured for one epoch of user/item-
sequence update.

5. CONCLUSION AND DISCUSSION
In summary, we have provided RRN, a novel recommender

system based on recurrent neural networks that can accu-
rately model user and movie dynamics. In this paper, we
have provided the following contributions:

1. Nonlinear, Nonparametric, Dynamic Recommender:
We offer the first, to the best of our knowledge, rec-
ommender system that jointly models the evolution of
both user and item states, and focuses on extrapolat-
ing predictions into the future without hand-crafted
features. We accomplish this by adapting recurrent
neural networks architectures, particularly LSTMs, to
recommendation data in order to learn dynamic em-
beddings of users and movies.

2. Efficient Training: We provide an efficient training
procedure for our model, based on alternating opti-
mization of user and movie embeddings. This enables
us to scale to over 100 million ratings from over 6 years.

3. Empirical Evidence: We demonstrate that our model,
RRN, improves prediction accuracy over previous meth-
ods, and implicitly captures a variety of known tempo-
ral patterns in ratings data without explicit inclusion
in the model.
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