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ABSTRACT
Suppose we have two competing ideas/products/viruses, that
propagate over a social or other network. Suppose that they
are strong/virulent enough, so that each, if left alone, could
lead to an epidemic. What will happen when both operate
on the network? Earlier models assume that there is per-
fect competition: if a user buys product ‘A’ (or gets infected
with virus ‘X’), she will never buy product ‘B’ (or virus ‘Y’).
This is not always true: for example, a user could install and
use both Firefox and Google Chrome as browsers. Similarly,
one type of flu may give partial immunity against some other
similar disease.

In the case of full competition, it is known that ‘winner
takes all,’ that is the weaker virus/product will become ex-
tinct. In the case of no competition, both viruses survive,
ignoring each other. What happens in-between these two
extremes?

We show that there is a phase transition: if the competi-
tion is harsher than a critical level, then ‘winner takes all;’
otherwise, the weaker virus survives. These are the con-
tributions of this paper (a) the problem definition, which
is novel even in epidemiology literature [3, 17, 35] (b) the
phase-transition result and (c) experiments on real data, il-
lustrating the suitability of our results.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining
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1. INTRODUCTION
Given two partially competing products (like Firefox and

Google Chrome; or Android and iPhone), is it possible that
they both survive?
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The well-known Competitive Exclusion Principle in ecol-
ogy states that when two species are in complete competition
under constant conditions, the more fit one will eventually
drive the less fit one into extinction. A more common but
less well understood scenario is one where the competing
species induce partial immunity against one another. There
has been significant work trying to elucidate the conditions
under which such partial immunity leads to coexistence [25,
11, 26] but a complete theory has not yet emerged.

Here, we study the general case of two virus strains with
partial (and symmetric) cross-immunity spreading over a
fixed network topology. In addition to the implications for
the evolutionary problem discussed above, our results have
direct relevance to the spread of rumors and opinions in so-
cial networks and market penetration of products.

The contributions of this work are the following:

• the discovery that there is a phase transition, that is,
the weaker virus/product may survive, if the cross-
immunity satisfies a threshold condition. This seemed
to be an open problem even within the epidemiology
community [25]
• experiments on real data, showing that our model fits

well

Figure 1 shows the time-plots for partially competing
products Hulu vs. Blockbuster (a), and Google Chrome vs.
Firefox (b). They plot (normalized) count of Google queries,
versus time. We fit our model to the data1 and plot it as
well. Notice that it captures the trends well.

The rest of the paper is organized in the usual way: we
review related work in § 2 and formulate the problem giv-
ing details of our model in § 3. We give the analysis and
proof of our phase-transition and coexistence result in § 4
and demonstrate the validity of the results using simulations
and real-world case-studies in § 5. Finally, we discuss other
subtle aspects of the model in § 6 and conclude in § 7.

2. RELATED WORK
Here we provide a brief overview of the vast literature on

epidemiology, influence propagation and population ecology.
Epidemiology and Epidemic Thresholds There are nu-
merous, well-studied epidemiological models, including the
so-called homogeneous models [4, 27, 3]. They effectively as-
sume that the network is a full clique, that is, every person
has the same probability to contact every other person. A
large portion of the literature focuses on a single virus, and

1Fitted with www.alexbeutel.com/jsplot/kdd2012.html
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Figure 1: Plots of real web-search interest vs. time for pairs of competitors with our model fitted to the
data.

even then, there are numerous interesting sub-cases. Typical
propagation models include SIS (flu-like, with no immunity
- Susceptible / Infected / Susceptible), SIR (mumps-like,
with lifetime immunity - ‘R’= ‘recovered’), SIRS (with tem-
porary immunity), and many-many more - see [17] for a
detailed survey, or the 700-page book of Anderson and May
[3].

A lot of attention focuses on the so-called epidemic thresh-
old: under what conditions will a virus (say, flu-like) become
extinct? Earlier works [19, 28] studied specific topologies
(e.g., random graphs, power-law graphs, etc). Chakrabarti
et al. [10] and Ganesh et al. [13] found that, for arbitrary
topologies, and for the flu-like SIS model, the epidemic thresh-
old for any arbitrary graph is determined by the leading
eigenvalue of the adjacency matrix of the graph. Prakash
et. al. [31] generalized this result to any topology, as well
as almost any virus propagation model (SIR, SIRS, etc).
However, all of these works focus on single virus models.

Recent work [30] looked at a two-virus SIS model on ar-
bitrary graphs, but focused on the case where there was full
mutual immunity between viruses. Their theorem says that,
in such a setting, the stronger virus will push the weaker
one to extinction (‘winner takes all’), even if the weaker one
would be able to survive on the network when left alone.
Influence propagation - information diffusion Biolog-
ical viruses are not the only objects of interest that prop-
agate over the edges of a network. Rumors, ideas, memes,
and computer worms behave similarly and have attracted
a lot of interest, especially recently thanks to the internet
and the web. Research focuses on topics that include (a) in-
formation cascades [6, 14], (b) blog propagation [24, 16, 21,
33], and (c) viral marketing and product penetration [23].
Typical cascade models include (a) the independent cas-
cade [18] (essentially an ‘SIR’ - mumps-like model) and (b)
linear threshold [15]. Research work in multiple cascades
has examined extensions of the independent cascade model
for the case that nodes can not switch from one competitor
to the other [5, 20], as well as when they can [29].

There are several fascinating, but remotely-related prob-
lems: (a) which nodes to immunize, given a finite count of
vaccines [32, 36] (b) which are the best nodes to advertize
a new product, to maximize product penetration [12] (c)
which nodes are the most likely to be the culprits, when we
are given a snapshot of infected nodes in a graph. [22, 34]
Ecology In ecology, the principle of ‘competitive exclusion’
espouses that two species can not occupy the same ecological

niche in the long term. That is, ‘winner takes all’, using
our earlier terminology. Research has gone into studying
this using various propagation models like SIS, SIR, Lotka-
Volterra etc. (for example, see [8, 9, 1, 2]). Partial immunity
models have received much attention in epidemiology. For
example, [25] suggests a differential equation based model
and analyzes it via simulation. However, for this and most
other models of interest, a complete analytical solution has
been beyond reach.
Distinguishing features of current work: In short, none
of the previous work fulfills all the conditions of this current
work: (a) analytical proof of εcritical, the critical value of the
competition threshold (b) closed-form steady-state behavior
(c) under an SIS (flu-like) model.

3. PROBLEM FORMULATION
In this section, we formulate our problem, giving details

about the model used and the assumptions. Table 1 explains
the terminology we have used in the paper. Bold letters
typically denote matrices (A, M etc.).
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Figure 2: State Diagram for a node in the graph
under our partial-competition model.

3.1 The propagation model
We assume that the competing viruses are spreading on

the network according to a propagation model, which we de-
scribe next. We call our propagation model SI1|2S, based on



Table 1: Symbols and Definitions
Symbol Definition and Description

SI1|2S our competing viruses model

β1(or β2) attack rate of virus 1 (or virus 2)
δ1(or δ2) cure rate of virus 1 (or virus 2)
ε Interaction factor between virus 1 and 2
A adjacency matrix of the underlying

graph
λ1(M) largest eigenvalue of matrix M
λ λ1(A)
σ1 λβ1/δ1 (strength of virus 1)
σ2 λβ2/δ2 (strength of virus 2)
I1 (or I2) The number of nodes infected with only

virus 1 (or only virus 2)
I1,2 The number of nodes infected with both

virus 1 and virus 2
κ1 Fraction of nodes infected with virus 1

((I1 + I1,2)/N)
κ2 Fraction of nodes infected with virus 2

((I2 + I1,2)/N)
i12 Fraction of nodes infected with both

viruses (I1,2/N)
i1 (or i2) Fraction of nodes infected with virus 1:

I1/N (or virus 2: I2/N)
κ∗1, κ

∗
2, i
∗
12 The solution at the coexistence equilib-

rium (if exists)

the popular “flu-like” SIS (Susceptible-Infected-Susceptible)
model [17]. SI1|2S denotes Susceptible - Infected1 or 2 - Sus-
ceptible. Each node in the graph can be in one of four states:
Susceptible (healthy), I1 (infected by virus 1), I2 (infected
by virus 2), or I1,2 (infected by both virus 1 and virus 2).
The state transition diagram as seen from a node in the net-
work is shown in Figure 2. We could have extended other
single virus models as well, but we believe that our model
is a reasonable starting point, and we leave the analysis of
other models as future work.

Healing (virus death) rate: δ. If a node is in an
infected state (I1, I2, or I1,2), it recovers on its own with
some rate, δ1 for virus 1 or δ2 for virus 2. The healing rate
is inversely related with the virus’s strength: a high δ means
that nodes that are infected heal quickly. For example, a
product that lasts a long time such that people using it
rarely consider alternatives would be modeled with a low δ
value.

Attack (virus transmission) rate: β. An infected
node can spread the virus to its neighboring nodes, and the
node susceptibility is captured by β1 and β2. Specifically, an
infected node transmits its infection to each of its healthy
neighbors independently at rate β1 (or β2). The more often
an idea or product is shared with friends, frequently referred
to as being “viral,” the higher the value for β.

Virus interaction factor: ε. A node infected with one
virus may be more or less susceptible to being infected by the
other virus, as determined by the factor ε. The transmission
rate for a virus becomes εβ1 (or εβ2) when a node is already
infected with one virus. Specifically, if a node is infected
with virus 1, each of its neighbors infected with virus 2 have
a transmission rate to it of εβ2; a node infected with virus
2 can only be infected with virus 1 at a rate of εβ1.

This is a novel generalization of the single-virus SIS model

to a multiple-virus scenario. The value of ε can describe
many different virus interactions. If ε = 0 then the viruses
are fully mutually immune, and 0 < ε ≤ 1 suggests an
amount of competition between viruses.

Fair-play: We assume that the competitors are playing a
‘fair game’: All nodes in the network have the same model
parameters (β’s, δ’s, ε) for each of the viruses and behave
according to the state-diagram in Figure 2.

3.2 Problem Statement
We are now in a position to state the problem formally.

We assume the underlying network is connected - otherwise
we just have separate disconnected problems.
Interacting viruses problem
Given: An undirected connected graph G, and the propa-
gation model (SI1|2S) parameters (β1, δ1 for virus 1, β2, δ2
for virus 2, and ε)
Find : What are the possible fixed points for the system?
In particular, for what values of ε is there a fixed point for
which both virus 1 and virus 2 survive?

3.3 Model Formulation for a Clique
For a clique, the following differential equations fully de-

scribe the transitions of the system, seen in Figure 2. Here
I1, I2, and I1,2 are the number of nodes infected with only
virus 1, only virus 2, and both virus 1 and 2 respectively.
N is the total number of nodes, and S is the number of
susceptible nodes (S = N − I1 − I2 − I12).

dI1
dt

= β1S(I1 + I12) + δ2I12 − δ1I1 − εβ2I1(I2 + I12) (1)

dI2
dt

= β2S(I2 + I12) + δ1I12 − δ2I2 − εβ1I2(I1 + I12) (2)

dI12
dt

= εβ1I2(I1 + I12) + εβ2I1(I2 + I12)−(δ1 + δ2)I12 (3)

4. RESULTS AND PROOFS
The goal of our analysis is to find for what values of ε

is there an equilibrium point for which both virus 1 and
virus 2 survive. We find that there is an εcritical such that if
ε > εcritical then an equilibrium point for which the viruses
coexist.

4.1 Formulating the problem
At an equilibrium point, all derivatives are zero. Thus,

we can find a simple equation for I12

ε(β1 + β2)I1I2 = (δ1 + δ2 − ε(β1I2 + β2I1))I12

Lemma 1. The number of people infected by both virus 1
and virus 2 will obey the following equation:

I12 = I1I2ε(β1 + β2)/(δ1 + δ2 − ε(β1I2 + β2I1))

Proof. Trivial, given the above.

Thus we have the expected three equilibrium points

• I1 = I2 = I12 = 0
• I1 = I12 = 0, I2 = N − δ2

β2

• I2 = I12 = 0, I1 = N − δ1
β1



and possibly one for which I1, I2 > 0 and obeys the differ-
ential equations outlined:

0 = β1S(I1 + I12) + δ2I12 − δ1I1 − εβ2I1(I2 + I12) (4)

0 = β2S(I2 + I12) + δ1I12 − δ2I2 − εβ1I2(I1 + I12) (5)

0 = εβ1I2(I1 + I12) + εβ2I1(I2 + I12)− (δ1 + δ2)I12 (6)

We rework these equations to be primarily in terms of
κ1, κ2, i12, where κ1 = (I1 + I12)/N , κ2 = (I2 + I12)/N ,
i12 = I12/N . As such, each of these terms represent a frac-
tion of the population that is infected. We first convert the
constraints to

Nκ1β1[1− κ1 − (1− ε)i2] = δ1κ1 (7)

Nκ2β2[1− κ2 − (1− ε)i1] = δ2κ2 (8)

εN(β1κ1i2 + β2κ2i1) = (δ1 + δ2)i12 (9)

where i1 = I1/N and i2 = I2/N .
Manipulating (9) to remove i1 and i2, we find

εκ1κ2[σ1δ1 + σ2δ2] = i12[δ1+δ2 + εσ1δ1κ1 + εσ2δ2κ2] (10)

Remember, because we are working with a clique the virus
strengths are σ1 = Nβ1/δ1 and σ2 = Nβ2/δ2.

4.2 Results
From these constraints, we look to find a lower bound on ε,

such that for any less competition there can be coexistence.

Theorem 1 (Epsilon Threshold Theorem). Given a
fully connected graph with the SI1|2S model parameters σ1 ≥
σ2, an equilibrium point for which κ1, κ2 > 0 exists if ε >
εcritical, where

εcritical =

{
σ1−σ2
σ2(σ1−1)

if σ1 + σ2 ≥ 2
2(1+

√
1−σ1σ2)
σ1σ2

if σ1 + σ2 < 2
(11)

Proof. In Lemma 3 we give the possible fixed point for
coexistence. In Lemma 4 we show the constraints for the
fixed points to be real, which contribute to the bounds in
(11). In Lemmas 5 through 9 we give the proofs for the con-
straints on the fixed points being positive, and in Lemma 10
we give the proof that the fixed points are less than one.

Next we describe all of the Lemmas, which contribute to the
proof.

Lemma 2. If a fourth equilibrium point exists, then it
should satisfy the follow equation:

ε(κ2 − κ1) = 1/σ1 − 1/σ2 (12)

Proof. Since we are only looking for non-zero solutions
for κ1 and κ2, we can eliminate them in (7) and (8).

1− κ1 − (1− ε)i2 = 1/σ1 (13)

1− κ2 − (1− ε)i1 = 1/σ2 (14)

Subtracting, we get the lemma.

Lemma 3 (Coexistence Lemma). If an equilibrium
point exists for which both viruses coexist in the network,

κ1, κ2 > 0, it will be at:

i12 = εκ1κ2

[
σ1δ1 + σ2δ2

δ1 + δ2 + εσ1δ1κ1 + εσ2δ2κ2

]
(15)

κ1 = κ2 +
1

ε

(
1

σ2
− 1

σ1

)
(16)

κ2 =
−2εσ1σ2 + ε2σ1σ

2
2 ± ε

√
σ1σ

3/2
2

√
4−4ε+ε2σ1σ2

2ε2σ1σ2
2

(17)

We will denote the solution to these three equations for fixed-
points as i∗12, κ∗1, and κ∗2 respectively.

Proof. Equation (15) is a simple rearrangement of equa-
tion (10), and equation (16) is a rearrangement of equation
(12). Plugging (15) and (16) into (13) allows us to solve for
κ2 resulting in (17).

For κ∗2 (and by extension κ∗1 and i∗12) to be a valid fixed-
point, κ∗2 must be: (a) real, (b) κ∗2 ≥ 0, (c) κ∗2 ≤ 1.

Lemma 4. In order for fixed-point solution κ∗2, and by
extension κ∗1 and i∗12, to be real valued, either σ1σ2 > 1 or

ε <
2(1−

√
1− σ1σ2)

σ1σ2
or ε >

2(1 +
√

1− σ1σ2)

σ1σ2
.

Proof. This constraint comes from the square root in
equation (17) for κ∗2. We analyze the quadratic equation
4− 4ε+ ε2σ1σ2 (in terms of ε) from inside the square root.
It is a simple, upward-facing parabola. Solving for the roots
of the quadratic equation in terms of ε we find

ε =
2(1±

√
1− σ1σ2)

σ1σ2
.

For σ1σ2 > 1 there is no solution because the equation is
positive for all values of ε. Thus, if σ1σ2 > 1 then κ∗2 must
be real valued. For σ1σ2 < 1 a portion of the parabola is
negative. Therefore, we require that ε be in the positive
region of the quadratic equation, where ε is less than the
lower root or greater than the upper root.

To find when κ∗2 ≥ 0, we consider the cases above for
which it is real. As we explained before, we will focus on
the lower bound for ε.

Lemma 5. For strengths σ1σ2 > 1, fixed-point κ∗2 is mono-
tonically increasing as a function of ε.

Proof. Taking the derivative of (17) we get

±(−2 + ε)
√
σ2 +

√
σ1

√
4− 4ε+ ε2σ1σ2

ε2
√
σ1σ2

√
4− 4ε+ ε2σ1σ2

.

Because σ1σ2 > 1, all of the square roots are real valued.
The denominator is clearly positive, so to prove that κ∗2 is
monotonically increasing, we must show that the numerator
is positive. To show that the numerator is always positive
we would like to show that

±(−2 + ε)
√
σ2 <

√
σ1

√
4− 4ε+ ε2σ1σ2

or alternatively

1 <
σ1

σ2

4− 4ε+ ε2σ1σ2

4− 4ε+ ε2
.

Because σ1 ≥ σ2 the first term is clearly > 1. For σ1σ2 > 1
(and of course ε > 0) this is trivially true.



Lemma 6. Fixed-point solution κ−2 , defined by

κ−2 =
−2εσ1σ2 + ε2σ1σ

2
2−ε
√
σ1σ

3/2
2

√
4−4ε+ε2σ1σ2

2ε2σ1σ2
2

, (18)

can only be positive when κ+
2 , defined by

κ+
2 =

−2εσ1σ2 + ε2σ1σ
2
2+ε
√
σ1σ

3/2
2

√
4−4ε+ε2σ1σ2

2ε2σ1σ2
2

, (19)

is positive.

Proof. As a simple case, for σ1σ2 > 1, κ−2 < 0 and thus
invalid for all ε > 0. As ε approaches 0, it is clear that κ−2 →
−∞, and as ε → ∞, we see that κ−2 approaches 0. Since
from the previous lemma we know that it is monotonically
increasing, κ−2 < 0 for σ1σ2 > 1.

If we do not restrict σ1 and σ2, it is still clear that κ−2 < κ+
2

for all ε ≥ 0, since the last term is always positive. We will
see later that κ+

2 < 1 for all ε > 0. Therefore, the range for
which κ−2 is valid is a strict subset of that for which κ+

2 is
valid.

Because κ−2 is only valid when κ+
2 is valid, it has no impact

on the phase transition claimed in Theorem 1. As a result,
we will focus on κ+

2 for the remainder of the proof and, with
a slight abuse of notation, use κ∗2 to denote κ+

2 .

Lemma 7. When strengths σ1σ2 ≥ 1, the fixed-point for
the population infected by virus 2 is positive, κ∗2 > 0, if and
only if

ε >
σ1 − σ2

σ2(σ1 − 1)
.

Proof. Solving equation (19) for κ∗2 = 0 produces ε =
σ1−σ2
σ2(σ1−1)

. Because κ∗2 is monotonically increasing in this

region (σ1σ2 > 1), for all ε greater than this solution, κ∗2 > 0,
and for all ε less than this solution κ∗2 ≤ 0.

Lemma 8. If virus strengths σ1 + σ2 < 2, then the fixed-
point for the population infected by virus 2 is positive, κ∗2 >
0, for

ε >
2(1 +

√
1− σ1σ2)

σ1σ2
.

Proof. For κ∗2 to be positive, the numerator of (19) must
be positive. We can reduce this as follows:

− 2εσ1σ2 + εσ1σ
2
2 + ε

√
σ1σ

3/2
2

√
4− 4ε+ ε2σ1σ2

= εσ2(
√
σ1σ2

√
4− 4ε+ ε2σ1σ2 − 2σ1 + εσ1σ2)

≥ εσ2(0− 2σ1 + 2(1 +
√

1− σ1σ2))

= 2εσ2(−σ1 + 1 +
√

1− σ1σ2)

For this to be positive we must have
√

1− σ1σ2 > σ1 − 1,
which is true for σ1 + σ2 < 2.

Lemma 9. If virus strengths σ1 + σ2 ≥ 2 then the fixed-
point for the population infected by virus 2 is positive, κ∗2 >
0, for

ε >
σ1 − σ2

σ2(σ1 − 1)
.

Proof. Again, for κ∗2 to be positive, the numerator of
(19) must be positive. We can reduce this as follows:

− 2εσ1σ2 + εσ1σ
2
2 + ε

√
σ1σ

3/2
2

√
4− 4ε+ ε2σ1σ2

= εσ2(
√
σ1σ2

√
4− 4ε+ ε2σ1σ2 − 2σ1 + εσ1σ2)

≥ εσ2

(
√
σ1σ2

√
σ1(−2+σ1+σ2)2

σ2(−1 + σ1)2
−2σ1+σ1σ2

(
σ1−σ2

σ2(1−σ1)

))

= εσ1σ2

(
2− σ1 − σ2

1− σ1
− 2 +

σ1 − σ2

1− σ1

)
= 0

Lemma 10. The fixed-point for the population infected by
virus 2 is valid, κ∗2 ≤ 1, for σ1 ≥ σ2 and ε ≥ 0.

Proof. The constraint κ∗2 ≤ 1 is equivalent to

−2εσ1σ2 − ε2σ1σ
2
2 + ε

√
σ1σ

3/2
2

√
4− 4ε+ ε2σ1σ2 < 0.

This can be simplified as follows:

√
σ1σ2

√
4− 4ε+ ε2σ1σ2 < 2σ1 + εσ1σ2 (20)

σ1σ2(4− 4ε+ ε2σ1σ2) < 4σ2
1 + ε2σ2

1σ
2
2 + 4εσ2

1σ2 (21)

σ1σ2 − εσ1σ2 < σ2
1 + σ2

1σ2 (22)

σ2

σ1

1− ε
1 + εσ2

< 1 (23)

The simplification to (23) makes it clear that the lemma is
true for σ1 ≥ σ2 > 0.

As such, for any interaction factor ε > εcritical, we have
proved that κ∗1 and κ∗2 are valid equilibrium points for which
the population infected by each virus κ1, κ2 > 0. QED

5. EXPERIMENTS
We demonstrate our result using (a) simulation experi-

ments and (b) case studies using real data in this section.

5.1 Setup
Without loss of generality, in our experiments we assumed

that the first virus is the stronger virus. We primarily focus
on the case where σ1 > σ2 > 1. For our simulations we use
σ1 = 6 and σ2 = 4.

We run a simulation on a fully-connected clique of 1000
nodes. We vary ε around our expected threshold and for
each value of ε perform 10 runs over 4000 time steps. On
each run we begin by infecting 30 nodes at random with
each virus.

We analyze the results in two ways. First, we create a
steady-state plot of mean values and standard deviations for
κ1, κ2, and i12 at steady-state over a range of values for
ε. Over the results of the simulation we draw the behavior
predicted by our results. Second, for one ε > εcritical we
track each virus’s development over time with a time-plot.
The time-plot takes the average number of nodes infected
(κ1, κ2, and i12) at each time step and plots this against
time. Although the simulations were run for 4000 time steps,
the plots are truncated to give more detail to the initial
fluctuations of the virus counts.
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Figure 3: Coexistence is possible: Results from simulations on clique of size 1000 with theoretical fixed
points overlayed. (a) shows the steady-state population values, κ1, κ2, and i12, for each value of ε, with the
theoretical εcritical marked. (b) shows the development of the two viruses over time for ε > εcritical. Notice that
both viruses survive as expected.

5.2 Simulation Results
Figure 3 displays our results. In short, the plots agree

exactly with our result, as expected. Figure 3(a) shows the
steady-state plot for the two viruses, and the theoretical
predictions closely match the simulation results. Similarly,
the viruses’ growth as shown in the time-plot in Figure 3(b)
matches what is expected.

For the steady-state plot, we expect the steady-state value
to be one of the other fixed points where at least one virus
dies out for ε ≤ εcritical and then a co-existence for ε >
εcritical. In Figure 3(a) we see for σ1 > σ2 > 1 and ε = 0,
winner takes all, as was proven in [30]. However, for ε >
εcritical we see a coexistence between the viruses as expected;
this is true even when the viruses are competing (ε < 1).
For ε = 0.4 > εcritical we have the time-plot, Figure 3(b),
showing the growth of both viruses to steady-state from a
small infection in the system.

5.3 Case-Studies using Real Data
We collected historical data for ‘web-search interest’ for

various competing products from the Google-Insights web-
site2, which aims to “provide insights into broad search pat-
terns.” This allows us to use the data as a proxy for sales/interest
for each product. We used the following pairs of rival prod-
ucts:

1. Hulu3 and Blockbuster4: Although not direct competi-
tors, both offer video entertainment services, though
under very different models.

2. Firefox5 and Google Chrome6: Two rival web browsers.

We consider both pairs of products to be examples of cases
where there is partial mutual immunity; people can use both
products, but the use of one we expect would detract from
the use of the other. While our model does not describe the
situations perfectly, we believe it is a good approximation.

2www.google.com/insights/search/
3www.hulu.com
4www.blockbuster.com
5www.mozilla.org/en-US/firefox/new/
6www.google.com/chrome

In Figure 4 we show plots of the web-interest vs. time for
both pairs of products, along with our model fitted to the
data7. In Figure 4(a), we used a virus interaction factor of
ε = 0.7 (along with virus parameters δHulu = 0.04, βHulu =
0.0007, δBlockbuster = 0.05, βBlockbuster = 0.00045). In Figure
4(b), we used a virus interaction factor of ε = 0.6 (along
with virus parameters δFirefox = 0.01, βFirefox = 0.000095,
δChrome = 0.01, βChrome = 0.00015). In Figure 4(c) we use
the same model as (b) but let the model continue to see
the projected steady state behavior. We note that the plots
begin when Hulu and Chrome are first introduced and with
Blockbuster and Firefox at a previous steady-state behavior.
In each of these fittings we see that our model fits the data
well. The fact that the model fits the data well demonstrates
the suitability of our SI1|2S model.

6. DISCUSSION

6.1 A general upper bound

Conjecture 1 (Epsilon Threshold Upper Bound).
Given an arbitrary graph with the SI1|2S model parameters
σ1 ≥ σ2 ≥ 1, an equilibrium point for which both virus 1 and
virus 2 survive exists if ε > εcritical, where

εcritical ≤
1

σ2
(24)

Justification: Since σ1 ≥ σ2 ≥ 1 and 0 < ε < 1, we know
that both virus 1 and virus 2 would be strong enough to sur-
vive independently but there is some competition between
them. Because of the competition, as virus 1 spreads to
more nodes, virus 2’s attack rate on average decreases and
thus its strength decreases. Therefore, if we overestimate the
strength or number of people with virus 1, this only makes
it more difficult for virus 2 survive and thus decreases the
maximum amount of competition virus 2 can handle, in-
creasing εcritical. To simplify the problem, we assume that
every person is infected with virus 1 (as if virus 1 was in-
finitely strong). In this case, a node can only be in state I1

7Fitted with www.alexbeutel.com/jsplot/kdd2012.html

www.google.com/insights/search/
www.hulu.com
www.blockbuster.com
www.mozilla.org/en-US/firefox/new/
www.google.com/chrome
www.alexbeutel.com/jsplot/kdd2012.html
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Figure 4: Real web-search interest vs. time plots for pairs of competitors with our model fitted to it. (c)
Predicts steady state values based on our model. Data acquired from Google Trends.

or I1,2, and the probability of a node with virus 2 infecting a
neighbor is always εβ2. This is now equivalent to a one virus
model where the strength of virus 2 is σ′2 = εσ2. Therefore,
as shown in previous research [10, 13, 31], if σ′2 > 1 then
virus 2 will survive. In this case, εcritical = 1

σ2
. However, be-

cause this is a relaxation of the original problem, we know
that this is an upper bound and in fact εcritical ≤ 1

σ2
.

6.2 Case-Study: Qualitative Analysis
We also consider the example of educational ideas, and

specifically sex education, as a virus. Sociology literature
analyzing the success of sex education programs notes the
impact of network effects and social structure on sex educa-
tion success [7]. We match education policy to our SI1|2S
model and analyze the implications.
Policy 1: Abstinence-Only Education Abstinence-only
education teaches abstinence until marriage as the only way
to live a healthy life, with students often taking an absti-
nence pledge. Under our model, virus 1 is believing in ab-
stinence (through education or pledge) and virus 2 is sexual
activity. Therefore, those who are in I1 have taken a pledge
of abstinence, those who are in I2 are sexually active, and
those people who are in S do not believe in abstinence but
are not sexually active either. It is obviously impossible to
both be following an abstinence pledge and to be sexually
active so nobody can be in state I1,2. Equivalently in this
case there is full mutual immunity or ε = 0.
Model 1 Predictions and Results Based on this fit,
because ε = 0, our model predicts ‘winner takes all:’ the
weaker virus dies out and the stronger virus survives. Soci-
ology research [7], studying over 11,000 people over 7 years,
notes that of the 2399 people claiming to have taken an ab-
stinence pledge, 1622 (67%) over time forgot. This suggests
that σAbstinence < σSexual Activity, and as a result, in the long
run sexual activity will win over abstinence.
Policy 2: Comprehensive Sex Education Comprehen-
sive sex education teaches numerous methods to have a safe,
healthy sex life, discussing both contraception and absti-
nence. Matching this to our model, virus 1 is being ed-
ucated in safe-sex practices and valuing their importance
and virus 2 is sexual activity. Therefore, those who are in
I1 have been educated about safe-sex practices and believe
they are important but are not sexually active, those in I2
are sexually active but do not practice safe sex, those in I1,2
practice safe-sex, and those in S are neither educated on
safe-sex practices nor sexually active. Here we expect little
to no competition between the two viruses and thus have an
ε value close to, if not equal to, 1.

Model 2 Predictions and Results Because ε is close to
1, we expect that ε > εcritical. As a result, it is possible for
there to be coexistence of the two viruses, such that there
can be a steady-state in which people are sexually active and
practice safe-sex. This appears to match sociology literature
claiming that those who initially use condoms will keep using
condoms [7].
In summary, our model qualitatively agrees with sociology
research and offers a plausible explanation for the results of
the study. Additionally, these two cases demonstrate the
value of a phase transition. In the first case, the model sug-
gests winner takes all and the ineffectiveness of abstinence-
only education. On the contrary, for policy 2, the model
predicts coexistence, which agrees with the findings, and is
better for society.

6.3 Subtle Points
There are several subtle points, that we deferred until now,

for clarity of exposition. Specifically, here we discuss the
following issues:

6.3.1 What does it mean for ε > 1?
As before, the virus 2 transmission rate for a virus infected

with virus 1 becomes εβ2 and the virus 1 transmission rate
for a virus infected with virus 2 becomes εβ1. However,
because ε > 1 the transmission rate for each virus increases
for neighbors that are already infected. We consider this
to be a form of cooperation between the viruses (products,
ideas, etc.).

This pattern of cooperation between products is common
in product ecosystems. An example of this is that people
who have an iPod are more likely to buy music and videos
through Apple’s iTunes. Making use of such cooperation can
be seen in ‘freebie marketing’ or the ‘razor and blades busi-
ness model,’ in which the company producing razor blades
sells the razors at an artificially low price creating a market
for the blades. This method of tightly integrating products
is common in a variety of industries.

6.3.2 What happens if σ2 or σ1 ≤ 1?
Because σ1 ≥ σ2 there are two cases we can analyze. The

first is when σ1 ≥ 1 > σ2, in which the second virus is
too weak to survive on its own. We will refer to this as
the “piggyback setting,” because virus 2 can only survive
with the help of the first. The second condition is when
1 > σ1 ≥ σ2, where both viruses are independently too weak
to survive. We will refer to this as the “teamwork setting,”
because only through cooperation can both viruses survive.
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(d) ε = 8, σ1 = 0.8, σ2 = 0.6

Figure 5: With enough collaboration, even weak viruses can survive. Results from simulations on population
of N = 1000 with theoretical values overlayed, and 1 > σ2. The first column, (a) and (c), is the “piggyback”
case where just virus 2 is too weak to survive. The second column, (b) and (d), is the “teamwork” case where
neither virus is on its own strong enough to survive. The top row gives the steady-state plots, showing the
steady-state footprint vs. the interaction factor ε. The second row gives the time-plots, showing the infection
footprint developing over time.

In each of these cases, Theorem 1 still holds - plugging in σ1

and σ2 we find an εcritical for which a fixed point in which
κ1, κ2 > 0 exists. This suggests that even if both viruses
are independently too weak to survive on their own, with
enough cooperation they can.

To test our theorem, we ran similar simulations where
either one or both viruses were too weak to independently
survive. In Figure 5(a) we show the steady-state plot for
the piggyback case of σ1 > 1 > σ2. As expected, for ε = 1
when the viruses are independent, virus 1 survives but virus
2 is not strong enough and dies out. For a sufficient amount
of cooperation, ε > εcritical, we find that virus 2 can survive
as well. We see in Figure 5(c), the corresponding time-plot
where ε = 3.5 > εcritical, that once virus 1 grows, virus 2 is
able to survive as well.

We also simulated the teamwork case, where neither virus
is independently strong enough to survive, 1 > σ1 ≥ σ2.
In Figure 5(b) we show the steady-state plot for this case.
Again, the theoretical result and predicted phase-transition
match the simulation results. For ε = 1, the two viruses are
independent and, since they cannot survive on their own, die
out. In this case, the phase transition is based on the second
part of Theorem 1 where σ1+σ2 < 2, and as such the bound
is a result on the restriction of κ2 being real. As such, at
εcritical both κ1, κ2 > 0 rather than equal to 0. We see here
at the threshold a large amount of uncertainty in the simula-
tion but as we move away from the threshold the simulation

follows this new fixed point. Interestingly, we must initially
infect a large portion of the graph for the system to go to this
fixed point, and not die out. For ε = 7.75 > εcritical, Figure
5(d) shows the time-plot, demonstrating that both viruses
quickly reach steady-state with a high amount of overlap.

7. CONCLUSIONS
We defined and studied the problem of partial competi-

tion, where two viruses/products provide partial immunity
against each other.

The main contributions of our work are as follows:

1. Problem Definition: The problem is novel, in the data
mining and web mining communities, and even in the
epidemiology literature [3, 17].

2. Threshold Result and Proof : We showed that there is
a phase transition: ‘winner takes all,’ until the com-
petition level drops below a critical value. Above this
critical value we find a closed-form steady-state solu-
tion with coexistence.

3. Experiments and Case-studies: We showed results from
real settings (like browsers - Firefox vs Google Chrome),
which agree with our model.
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