
Network Anomaly Detection using Co-clustering
Evangelos E. Papalexakis†, Alex Beutel†, Peter Steenkiste∗†

∗Department of Electrical & Computer Engineering
†School of Computer Science
Carnegie Mellon University,

Pittsburgh, PA, USA
Email: {epapalex, abeutel, prs}@cs.cmu.edu

Abstract—Early Internet architecture design goals did not put
security as a high priority. However, today Internet security is a
quickly growing concern. The prevalence of Internet attacks has
increased significantly, but still the challenge of detecting such
attacks generally falls on the end hosts and service providers,
requiring system administrators to detect and block attacks on
their own. In particular, as social networks have become central
hubs of information and communication, they are increasingly
the target of attention and attacks. This creates a challenge of
carefully distinguishing malicious connections from normal ones.

Previous work has shown that for a variety of Internet attacks,
there is a small subset of connection measurements that are good
indicators of whether a connection is part of an attack or not.
In this paper we look at the effectiveness of using two different
co-clustering algorithms to both cluster connections as well as
mark which connection measurements are strong indicators of
what makes any given cluster anomalous relative to the total data
set. We run experiments with these co-clustering algorithms on
the KDD 1999 Cup data set. In our experiments we find that
soft co-clustering, running on samples of data, finds consistent
parameters that are strong indicators of anomalous detections
and creates clusters, that are highly pure. When running hard
co-clustering on the full data set (over 100 runs), we on average
have one cluster with 92.44% attack connections and the other
with 75.84% normal connections. These results are on par with
the KDD 1999 Cup winning entry, showing that co-clustering is a
strong, unsupervised method for separating normal connections
from anomalous ones.

Finally, we believe that the ideas presented in this work may
inspire research for anomaly detection in social networks, such
as identifying spammers and fraudsters.

I. INTRODUCTION

Security is an increasingly large problem in today’s Internet.
However, the initial Internet architecture did not consider
security to be a high priority, leaving the problem of managing
security concerns to end hosts. This is therefore a growing
problem for system administrators having to continually fend
off a variety of attacks and intrusion attempts by both individu-
als and large botnets. An early study from 2001 suggested that
there are roughly 2000-3000 denial-of-service (DoS) attacks
per week, with many attacks having a lower bound of 100,000
packets-per-second [19]. With the rise of botnets, we can
only expect for the prevalence of distributed denial-of-service
(DDoS) attacks to have risen over the last decade.

In particular, as social networks have become central to
communication internationally, there has been an increase in
scrutiny and attacks on these services. For example, Twitter
was taken down for multiple hours in 2009 due to a continued

DDOS attack [6], and Google, along with numerous other
companies, reported being attacked in 2010 [2].

This security issue creates the challenge for system adminis-
trators of how to distinguish normal connections of legitimate
users from malicious connections. An administrator, in the
face of an attack, wants to block such malicious connections
without blocking legitimate users. We can never know for sure
if any given connection is legitimate or malicious, but we can
attempt to isolate a set of connections that stand out from nor-
mal user behavior, so as to help system administrators detect
attacks. We call this problem network intrusion detection.

In this paper we propose to apply a set of emerging data
mining and machine learning techniques to the problem of
network intrusion detection. The abstract task description is
as follows: We are given a set of connection measurements,
each of which consists of a set of connection parameters;
we are seeking to categorize each connection as ‘normal’ or
‘anomalous’ based solely on this set of parameters (i.e. without
using any prior knowledge about the connection, or training
data). An ‘anomalous’ connection may be loosely defined as
any connection or set of connections that in some way deviates
from common behavior. Given such a set of connections, we
look to find methods to easily categorize and display why a set
of connections are anomalous, with the hope that with human
review we can identify malicious behavior.

In [16], the authors show that certain types of attacks
are strongly correlated with only subsets of a connection’s
parameters. In other words, it is possible to determine the
type of an attack just by looking at a specific subset of pa-
rameters that best characterizes this attack. The only problem
is that these ‘best’ subsets of parameters are not known a-
priori. Previous attempts, such as [16] have employed feature
selection techniques in order to single out the most impor-
tant parameters overall, and then apply traditional clustering
algorithms, on the reduced set of parameters. This particular
work essentially does Principal Component Analysis on the
data, and subsequently select the most important features via
thresholding.

We, however, propose another approach where we don’t
need to single out the most important parameters for the
whole set of attacks. Instead, we seek to find directly the
(possibly overlapping) subsets of parameters associated with
a set of connections that make such a set abnormal in the
larger set of normal connections. There is a class of data

mining algorithms by the name of Co-clustering [8], [10], [21]
that may effectively tackle this problem. In rough terms, Co-
clustering may be described as follows: Given a data matrix,
we seek to find subsets of rows that are correlated (usually
in the Euclidean sense) with only a subset of its columns (as
opposed to the traditional clustering approach, where a subset
of the rows has to be similar across all columns/dimensions).
This description readily applies to the problem at hand, if
we model the set of connection measurements as a matrix,
where the rows correspond to each distinct connection, and
the columns correspond to the connection’s parameters.

The advantage of the proposed approach over the prior art
is the fact that our analysis will not rely on any particular la-
belling of the dataset that might yield biased results according
to the labeller’s experience of what is normal or abnormal and
what an attack might look like. This way, on the one hand, we
avoid fine tuning our anomaly detection mechanism so that it
works perfectly for just a specific dataset and recognizes only
a specific set of attacks that pertains to a certain labelling of a
certain dataset (whereas it might fail on another dataset). On
the other hand, this allows us to possibly discover attacks and
intrusion attempts that go unnoticed or have not been noticed
before. By looking at anomalous connections more generally,
with human review of the data, we are not dependent on just
catching past attacks, but instead reviewing all anomalies that
don’t match normal behavior.

We use the KDD 1999 Cup Intrusion Detection Dataset
[4]. This dataset is in a connection-by-parameter matrix form,
and also contains labels for each connection; these labels will
be used at the evaluation step of the algorithm, when we
will attempt to evaluate the homogeneity of the resulting co-
clusters (e.g. connections of the same type end up in the same
co-cluster). It is worth pointing out that the labels will not be
involved in the actual co-clustering process, for the reasons
we explained earlier on.

The outline of the paper is as follows. In Section II we
describe our initial motivation for pursuing co-clustering as
our method of data analysis. In Section III we describe the
methodology for our data mining, explaining the behavior and
our usage of the different co-clustering algorithms. In Section
IV we give the results of running numerous experiments
with two different co-clustering algorithms. In Section V we
provide a brief literature survey on network intrusion detection,
with particular focus on applications using clustering. Finally,
in Section VI we describe our conclusions about the usefulness
of co-clustering and how the two algorithms could be used
together to detect and analyze anomalous connections.

NOTATION PRELIMINARIES

A scalar is denoted by a lowercase, italic letter, e.g. x. A
column vector is denoted by a lowercase, boldface letter, e.g.
x. An I×J matrix is denoted by an uppercase, boldface letter,
e.g. X. The Frobenius norm of a matrix X is denoted by ‖X‖F
and is the square root of the sum of squared elements of the
matrix X.

II. MOTIVATION

To justify the use of co-clustering for network anomaly
detection, we begin by demonstrating the shortcomings and
difficulties of simpler methods, such as Principal Component
Analysis, which essentially boils down to regular clustering,
considering the entire list of connection parameters.

For this purpose, we use a labelled portion of the dataset,
consisting of 494020 connections; 97277 out of them are
‘normal’ and 396743 are ‘attacks.’ There are 22 different types
of attacks in the labelled data set. For each connection there
are 37 recorded measurements, listed in Table I. We form
a 494020 × 37 matrix X where each row corresponds to a
connection and each column corresponds to a parameter. As
a preliminary step, we choose to normalize each column of
X, dividing by the maximum element of each column; this
scaling brings all parameters to the same range and prevents
inherently high valued parameters from dominating the matrix.
This step is essential because we will use `2 norms/Euclidean
distances. In one of the two algorithms we use, we also take
the natural logarithm of the non-zero values of X.

Each connection is now a vector in 37-dimensional space,
which makes it hard to view in two or even three dimensions.
A standard dimensionality reduction technique, which enables
us to visualize high dimensional data, comes by the name of
Principal Component Analysis (PCA), which basically boils
down to the Singular Value Decomposition of X. Very briefly,
X may be decomposed as

X = UΣVT

where U,V are the left and right singular matrices (which
are orthonormal), and Σ is a diagonal matrix that contains the
singular values of X. Let u1,u2 be the first two columns of U.
Then, if we plot those two vectors against each other, we get
an optimal (in the least squares sense) projection of the data
in the 2-dimensional space. In Figure 1 we demonstrate such a
projection for X. This procedure was done, after considering
the whole set of 37 parameters. We observe that normal
and anomalous connections cannot be clearly differentiated
without the labels. To corroborate this observation, we also
did K-means clustering to the rows of X [3] with K = 2, and
measured the ratio of normal connections to the total number
of connections in each cluster. For cluster 1 the ratio was
6 · 10−4, which indicates very few normal connections, and
for cluster 2 we got 0.1963, which is also really low. This
indicates that even though most of the normal connections
ended up in the second cluster, we were not able to tell them
apart from the attacks.

The method we propose to use, co-clustering, selects a
subset of the rows and a subset of the columns (i.e parameters)
of X. A naive and suboptimal way to emulate that behaviour,
without actually using co-clustering, is the following. First,
we do K-means clustering on the columns of X. This way,
hopefully, parameters that are similar should end up in the
same cluster. Consider now Xk for k = 1 . . .K, being the
resulting matrix when keeping only the columns that belong

Fig. 1. PCA on X with points colored by given labels, where blue points were labelled as normal, and red points were labelled as an attack.

Measurement Name Measurement Type
duration continuous
protocol_type symbolic
service symbolic
flag symbolic
src_bytes continuous
dst_bytes continuous
land symbolic
wrong_fragment continuous
urgent continuous
hot continuous
num_failed_logins continuous
logged_in symbolic
num_compromised continuous
root_shell continuous
su_attempted continuous
num_root continuous
num_file_creations continuous
num_shells continuous
num_access_files continuous
num_outbound_cmds continuous
is_host_login symbolic
is_guest_login symbolic
count continuous
srv_count continuous
serror_rate continuous
srv_serror_rate continuous
rerror_rate continuous
srv_rerror_rate continuous
same_srv_rate continuous
diff_srv_rate continuous
srv_diff_host_rate continuous
dst_host_count continuous
dst_host_srv_count continuous
dst_host_same_srv_rate continuous
dst_host_diff_srv_rate continuous
dst_host_same_src_port_rate continuous
dst_host_srv_diff_host_rate continuous
dst_host_serror_rate continuous
dst_host_srv_serror_rate continuous
dst_host_rerror_rate continuous
dst_host_srv_rerror_rate continuous

TABLE I
LIST OF CONNECTION MEASUREMENTS IN THE DATA SET.

to the k-th cluster. In Fig. 2 we demonstrate this for K = 3.
We can see that, at least, for k = 1 and k = 3, the red
points (i.e. anomalous connections) are better separated from
blue points, in contrast to Fig. 1. This observation provides
intuition and motivation, as to why we need to consider only
subsets of the parameters, in order to achieve a better result.
We proceed to show that by using co-clustering, we can yield
even better results.

III. METHOD DESCRIPTION

A. Introduction to Co-clustering

In a nutshell, co-clustering seeks to find subsets of rows
and columns in the data matrix that are similar, usually in the
least squares sense. Hard co-clustering attempts to partition
the rows and the columns of the matrix, therefore 1) no
overlap is allowed, and 2) all rows and columns have to
be assigned to a row/column subset. This problem is NP-
hard, and the algorithm we use is an approximation thereof.
On the other hand, soft co-clustering relaxes the ‘disjoint
subsets’ constraint, allowing for overlapping between subsets.
Because we focus on the application of co-clustering rather
than the algorithms themselves, we give only a brief overview
of the two co-clustering algorithms below. In the following
description, we may use the terms ‘cluster’ and ‘co-cluster’
interchangeably.

1) Hard co-clustering: Information Theoretic co-clustering:
In [8], Banerjee et al. introduce a class of co-clustering
algorithms that employ Bregman divergences, unified in an
abstract framework. This approach seeks to minimize the
loss of information incurred by the approximation of the
data matrix X, in terms of a predefined Bregman divergence
function. Bregman co-clustering is what we called earlier a
hard co-clustering technique, in the sense that it seeks to
locate a non-overlapping “checkerboard” structure in the data.
Furthermore, it provides the liberty to pick different number
of rows and columns that belong to each co-cluster (denoted

(a) X1 (b) X2 (c) X3

Fig. 2. PCA on Xk

by K and L respectively). Let ρ denote a mapping of the I
row indices to the K row cocluster partitions, and γ denote a
mapping of the J column indices to the L column partitions.
Since Bregman co-clustering is hard co-clustering, ρ and γ
define disjoint sets of row and column indices, respectively.
Therefore, a co-clustering of X may be described by (ρ, γ).

Furthermore, given a co-clustering (ρ, γ), and a matrix
approximation scheme C (we refer the interested reader to
the original paper [8] for a detailed presentation of those
schemes), a class of random variablesM(ρ, γ, C) that preserve
the original characteristics of matrix X is defined. It is shown
that the best approximation X̂ of the data matrix that satisfies a
given co-clustering (ρ, γ) and a matrix approximation scheme
is the one that minimizes the Bregman Information of X̂,
where the Bregman Information of a random variable X is
defined as

Iφ(X) = E

[
log

(
X

E[X]

)]
where E[·] denotes the expected value.

Finally, the optimal co-clustering (ρ?, γ?), given a Bregman
divergence dφ, a data matrix X and a matrix approximation
scheme C is given by

(ρ?, γ?) = arg min
(ρ,γ)

E
[
dφ

(
X, X̂

)]
where X̂ is the minimizer of the Bregman Information, given
(ρ, γ) and C.

In place of dφ, there are two distance or divergence func-
tions that can be employed:

1) I-Divergence, which is defined as dφ(x1, x2) =
x1 log(

x1

x2
)− (x1 − x2), for any numbers x1, x2 ≥ 0.

2) Squared Euclidean Distance, which is defined as
dφ(x1, x2) = (x1 − x2)2, for any real numbers x1, x2.

The above functions may be generalized (elementwise) for
matrices, instead of scalar values.

The above Bregman Co-clustering framework includes pre-
viously introduced methods such as Information Theoretic
Co-clustering [11] (by using the I-Divergence metric), and
the Minimum Sum Residuals Co-clustering [9] (by using the
Squared Euclidean Distance metric). Bregman Co-clustering is

shown to be NP-hard as well, and therefore existing algorithms
can only guarantee local minimum solutions. We shall review
the issues that arise from this fact in the next section.

In our work, we choose to use the Information Theoretic
Co-clustering variant as our hard co-clustering algorithm. We
ran the implementation provided by [1] on our data set. For
this algorithm, we do not normalize each column of X, before
running the algorithm, because we are not optimizing in the
least squares sense, and therefore there is no need for such
normalization.

2) Soft co-clustering: Sparse Matrix Regression: In [21],
co-clustering is formulated as a constrained outer product
decomposition of the data matrix, with sparsity on the latent
factors of the data matrix X.

The intuition behind SMR is the following. Consider a
decomposition of X in K components, as follows:

X ≈ a1b
T
1 + . . .aKbTK

The above decomposition is also called bilinear decomposi-
tion, because it breaks down the data matrix into a sum of outer
products of vector pairs. Each outer product akb

T
k is a rank

one component, which corresponds to the k-th co-cluster. We
ideally want the so called latent factors ak and bk to be very
sparse (i.e. to have many zeros and few non-zero values). This
latent sparsity is key: The non-zero elements in ak will select
the rows that participate in the k-th co-cluster, and respectively,
the non-zero elements in bk will select the columns.

We may compactly organize vectors ak and bk for k =
1 . . .K as the columns of matrices A,B (of sizes I ×K and
J ×K in respect). Thus, SMR co-clustering may be formally
stated as the minimization of the following loss function:

‖X−ABT ‖2F + λ
∑
i,k

|A(i, k)|+ λ
∑
j,k

|B(j, k)| (1)

where K is the number of extracted coclusters, and λ is a
sparsity penalty parameter.

In [22], a coordinate descent algorithm is proposed, in order
to solve the above optimization problem. More specifically,
one may solve this problem in an alternating fashion, where
each subproblem is basically a Lasso [27] problem, common

in statistics and machine learning literature. The algorithm is
implemented in Matlab, and therefore has some scalability
issues, pertaining to the way that Matlab treats for-loops and
memory allocation.

The SMR co-clustering algorithm may be characterized as
a lossy, soft co-clustering algorithm, in the sense that some
rows and columns may not be assigned to any co-cluster, and
that overlapping co-clusters can be extracted.

In this work, we choose SMR with non-negativity con-
straints as our soft co-clustering algorithm. Code for this
algorithm may be downloaded from [5]. As a standard pre-
processing step, on top of the column normalization that we
described above, we choose to scale the data as follows:
For each non-zero entry of matrix X, say X(i, j) we take
log(X(i, j)) + 1. This technique is empirically shown to
compress the values of X in such a way that large entries
don’t dominate smaller ones, especially when dealing with
loss functions such as the one shown here.

IV. ANALYSIS OF THE RESULTS

In using the above methodology, we ran multiple tests
using both implementations and used results from SMR
co-clustering to spur analysis in information theoretic co-
clustering.

A. SMR Co-clustering

Unfortunately, due to the current implementation of the
SMR co-clustering algorithm and its quadratic nature, as
discussed in the previous section, it was too slow to run over
the full data set. As a result, we ran the algorithm on random
samples of the data matrix containing 1

50 of the connections.
We ran the algorithm with K = 2 over 10 runs. For each
run we analyzed the quality of the results by looking at the
percentage of each cluster that was labelled as normal or
an attack. The CDF of the results of each cluster is shown
in Figure 3. As shown in Figure 3(b), SMR co-clustering
produces at least one cluster that is consistently almost entirely
attacks. The average purity of this cluster is 99.36%; while not
as strong of a result , Figure 3(a) shows that the other cluster
is still usually a majority normal connections, 73.21% on
average. Thus, by merely looking for connections that appear
anomalous, the algorithm does a good job of separating the
normal connections from the attacks.

For each of the 10 runs we also record the split in
parameters. Interestingly, despite being run on different
portions of the data set, the algorithm consistently separates
the clusters along the same parameters, as shown in Figure
4. Here, we look at the cluster in each run that, based on
the labels, contains a majority of attacks. We then record
the parameters that distinguish that cluster and record it.
We graphed how often each parameter was an indicator
of this anomalous cluster. As shown, the same seven
parameters always distinguished the anomalous cluster.
Not listed on the graph, the seven parameters are count,
srv_count, same_srv_rate, dst_host_count,

Fig. 4. Parameters associated with the ‘anomalous’ cluster.

dst_host_srv_count, dst_host_same_srv_rate,
and dst_host_same_src_port_rate.

B. Information Theoretic Co-clustering

The information theoretic co-clustering algorithm ran con-
siderably faster than the SMR co-clustering algorithm, en-
abling us to run it over the entire data set. For all of our
runs we set K = L such that the number of column clusters
was the same as the number of row clusters. For our initial
tests we set K = L = 2. We ran the algorithm on the full
data set for 100 runs, and as with the previous algorithm,
analyzed the purity of each cluster based on the labels given.
Again, as shown in Figure 5 we find that at least one cluster
has a very high percentage of attack connections, on average
92.44% malicious connections, and the other cluster is still
usually mostly normal connections, on average 75.84% normal
connections. However, overall the purity of the output of
the information theoretic co-clustering is not quite as pure
as that from SMR co-clustering, at least with respect to the
‘malicious’ co-cluster.

As with the SMR co-clustering, we attempted to isolate
certain parameters as being consistent indicators of anomalous
connections. However, when recording which parameters were
associated with the “anomalous cluster,” we found that each
parameter was considered an indicator approximately an equal
number of times across the 100 runs. We are approximating
an NP-hard problem, and as a consequence, it is very probable
that the algorithm will get stuck in a locally optimal solution.
Thus, we choose to run multiple instances of the algorithm,
with different initializations, in order to obtain some solutions
that are hopefully close to the global optimum. These locally
optimal solutions are also probably the reason why we weren’t
able to isolate a consistent set of parameters using this
algorithm.

Even though the information theoretic co-clustering did
not provide clear parameters as indicators, we can use the
algorithm’s ability to analyze the full data set by combining it
with the parameters given by the SMR co-clustering. Because

(a) Normal (b) Anomalous

Fig. 3. CDF on purity of clusters from SMR co-clustering.

(a) Normal (b) Anomalous

Fig. 5. CDF on purity of clusters from information theoretic co-clustering.

the information theoretic co-clustering provides a hard co-
clustering with non-overlapping clusters, and our data set
contains numerous types of attacks, we tried running the
algorithm with K = L = 5, allowing for a more fine-grained
break down of the data set. The purity of each cluster is shown
in Table II.

We then took pairs of clusters and plotted the points in
these clusters as a scatter plot of two parameters given from
the SMR co-clustering, coloring the points based on which
co-cluster the points were in. We compared this plot with
the coloring given by the labels themselves. In many cases
we found that the patterns that emerge from the labels were
the same patterns found by coloring points based on the
clusters given by the algorithm. For example, in Figure 6,
we see a scatter plot of dst_host_srv_count versus

Cluster Number of Connections Percent Normal Percent Attacks
1 20,156 97.74% 2.26%
2 116,822 5.30% 94.70%
3 29,591 93.34% 6.66%
4 281,437 0.21% 99.79%
5 46,014 93.85% 6.15%

TABLE II
PURITY OF CLUSTERS WHEN RUNNING INFORMATION THEORETIC

CO-CLUSTERING WITH K = L = 5.

dst_host_same_src_port_rate. In Figure 6(a) points
are colored by the labels given, and in (b) points are colored
based on the clusters found in information theoretic co-
clustering. The same odd patterns stand out, indicating that
little information could be gained in this case from knowing

(a) Labels (b) Clusters

Fig. 6. A plot of dst host srv count versus dst host same src port rate. In (a) colors are based on labels for connections, and in (b) colors are based on
the clusters computed by the information theoretic co-clustering.

the true labels over that given by the computed clusters.

Finally, we compare our results with hard co-clustering
against the top performing algorithm from the KDD Cup 99
Competition, for which the data set was released [12]. We note,
that for our work, we focused on detecting anomalies through
a purely unsupervised algorithm. As a result, we do not label
any cluster as an attack, but merely point out that its properties,
along certain connection parameters, differs from that of the
rest of the data set. This differs from the work done by teams
competing in the KDD Cup 99, who were expected to label
the clusters they found. In particular, the winning entry [24],
being in an entirely different spirit than the present approach,
uses a classifier that minimizes the conditional risk, along with
a combination of bagging and boosting

However, we found that our co-clustering approach pro-
duced a cluster purity on par with the winning approach to
the KDD cup 99. The cluster labelled as “normal” for the
winning entry was 74.6% pure. This is on par, with our results
for L = K = 2, for which one cluster was 75.84% pure, and
less pure than our results with L = K = 5 for which we have
three clusters with over 90% of the points being “normal.” In
labeling attacks, cluster purity for the winning entry ranged
from 64.8% to 99.9% depending on the attack type. This is
again on par with our results, where for L = K = 2 we have
one cluster 92.44% malicious connections and for L = K = 5
we have two “malicious clusters,” with purities of 94.7% and
99.79%.

This finding is important for practitioners, since our ap-
proach is by no means tailored for the specific problem, as
opposed to the winning entries of the competition; thus, it can
be easily generalized for a variety of problems, not necessarily
pertaining to computer network anomaly detection, by just
reformulating the application at hand to the appropriate matrix
representation.

V. RELATED WORK

In this section, we present a brief, but comprehensive liter-
ature survey of the prior art in anomaly detection, pertaining
both to computer networks and social networks. In [20], the
interested reader may find a survey of various techniques used
for network intrusion detection, whereas in [23] one can find
a collection of methods used for anomaly detection in general.

To the best of our knowledge, this work is the first to address
the network intrusion detection problem in the co-clustering
framework. However, as we pointed out in the introduction,
[16] illustrates the usefulness of selecting a subset of the
features of a connection, as sufficient in order to identify a
malicious connection over a normal one.

In addition, there is a wealth of previous work on intru-
sion/anomaly detection in computer networks that employs
clustering techniques, the majority of which, such as our work,
operate in an unsupervised manner. For instance, [25] pro-
poses an unsupervised clustering technique based on single-
linkage clustering. In [17] the authors propose an unsuper-
vised density-based and grid-based clustering algorithm, that,
according to the authors is able to discover “unforeseen”
attacks/anomalies. In [13], the authors introduce a method
for discovering hosts that operate as botnets by clustering the
communication traffic. In [26] a fuzzy clustering approach for
network intrusion detection is proposed, and in [14] a variation
of K-means clustering is used, for the same purpose.

Anomaly detection in communication or heterogeneous net-
works has only recently attracted substantial attention by the
research community. For example, [7] proposes a parameter-
free method that spots outliers/anomalies on graphs (where
graphs may represent a vast range of networks). On a similar
pace, [15] introduces methods for anomaly detection taking
real-time constraints into consideration. Finally [18] proposes
a tensor based approach for anomaly extraction in heteroge-

neous networks.

VI. CONCLUSIONS

As explained in our results, both SMR co-clustering and
information theoretic co-clustering proved to be powerful tools
for detecting anomalous connections out of a large data set
without training the algorithms. SMR co-clustering could not
compute clusters over the full data set but is effective in finding
parameters that are strong indicators of abnormality in the data
set and produces clusters that are highly pure. Information the-
oretic co-clustering on the other hand does not isolate certain
parameters consistently and does not always produce as pure
clusters, but can run on the full data set and be used to plot
the full set of connections, against the parameters calculated
by SMR co-clustering, colored similarly to that by the labels.
Therefore, by combining both methods, co-clustering could be
a strong technique for system administrators to review network
connections, searching for and reviewing anomalies.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Christos Faloutsos
for his insightful comments and discussions about this work.
This research was funded in part by NSF under award number
CNS-1040801 and a National Science Foundation Graduate
Research Fellowship. Research was sponsored by the Defense
Threat Reduction Agency and was accomplished under con-
tract No. HDTRA1-10-1-0120. Funding was provided by the
U.S. Army Research Office (ARO) and Defense Advanced
Research Projects Agency (DARPA) under Contract Number
W911NF-11-C-0088. Research was sponsored by the Army
Research Laboratory and was accomplished under Coopera-
tive Agreement Number W911NF-09-2-0053. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding parties

REFERENCES

[1] Bregman co-clustering code on-line. http://www.lans.ece.utexas.edu/
facility.html.

[2] Google hack attack was ultra sophisticated, new details show. http:
//www.wired.com/threatlevel/2010/01/operation-aurora/.

[3] K-means algorithm, wikipedia. http://en.wikipedia.org/wiki/K-means
clustering.

[4] Kdd 99 cup dataset. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html.

[5] Smr co-clustering code on-line. http://www.models.life.ku.dk/cocluster.
[6] Twitter restores service after attack. http://bits.blogs.nytimes.com/2009/

08/06/twitter-overwhelmed-by-web-attack/.
[7] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anoma-

lies in weighted graphs. Advances in Knowledge Discovery and Data
Mining, pages 410–421, 2010.

[8] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A
generalized maximum entropy approach to bregman co-clustering and
matrix approximation. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 509–514. ACM, 2004.

[9] H. Cho, I.S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared
residue co-clustering of gene expression data. In Proceedings of the
fourth SIAM international conference on data mining, volume 114, 2004.

[10] I.S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 269–274. ACM, 2001.

[11] I.S. Dhillon, S. Mallela, and D.S. Modha. Information-theoretic co-
clustering. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 89–98.
ACM, 2003.

[12] Charles Elkan. Results of the kdd’99 classifier learning contest. http:
//cseweb.ucsd.edu/∼elkan/clresults.html.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection. In Proceedings of the 17th conference on Security symposium,
pages 139–154. USENIX Association, 2008.

[14] Y. Guan, A.A. Ghorbani, N. Belacel, et al. Y-means: A clustering method
for intrusion detection. 2003.

[15] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li,
K. Maruhashi, B.A. Prakash, and H. Tong. Metric forensics: a multi-
level approach for mining volatile graphs. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 163–172. ACM, 2010.

[16] P. Kabiri and G.R. Zargar. Category-based selection of effective
parameters for intrusion detection. International Journal of Computer
Science and Network Security (IJCSNS), 9(9):181–188, 2009.

[17] K. Leung and C. Leckie. Unsupervised anomaly detection in network
intrusion detection using clusters. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pages 333–
342. Australian Computer Society, Inc., 2005.

[18] K. Maruhashi, F. Guo, and C. Faloutsos. Multiaspectforensics: Pattern
mining on large-scale heterogeneous networks with tensor analysis. In
Proceedings of the Third International Conference on Advances in Social
Network Analysis and Mining, 2011.

[19] David Moore, Geoffrey Voelker, and Stefan Savage. Inferring internet
denial-of-service activity. In In Proceedings of the 10th Usenix Security
Symposium, pages 9–22, 2001.

[20] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion
detection. Network, IEEE, 8(3):26–41, 1994.

[21] E.E. Papalexakis and N.D. Sidiropoulos. Co-clustering as multilinear
decomposition with sparse latent factors. In Acoustics, Speech and
Signal Processing (ICASSP), 2011 IEEE International Conference on,
pages 2064–2067. IEEE, 2011.

[22] E.E. Papalexakis, N.D. Sidiropoulos, and M.N. Garofalakis. Reviewer
profiling using sparse matrix regression. In Data Mining Workshops
(ICDMW), 2010 IEEE International Conference on, pages 1214–1219.
IEEE, 2010.

[23] A. Patcha and J.M. Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer Networks,
51(12):3448–3470, 2007.

[24] Bernhard Pfahringer. Winning the kdd99 classication cup: Bagged boost-
ing. http://www.sigkdd.org/explorations/issues/1-2-2000-01/pfahringer.
pdf.

[25] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled
data using clustering. In In Proceedings of ACM CSS Workshop on Data
Mining Applied to Security (DMSA-2001. Citeseer, 2001.

[26] H. Shah, J. Undercoffer, and A. Joshi. Fuzzy clustering for intrusion de-
tection. In Fuzzy Systems, 2003. FUZZ’03. The 12th IEEE International
Conference on, volume 2, pages 1274–1278. IEEE, 2003.

[27] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–
288, 1996.

