
Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big
Data

Abhimanu Kumar Alex Beutel Qirong Ho Eric P. Xing
School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract

We present a scheme for fast, distributed learn-
ing on big (i.e. high-dimensional) models ap-
plied to big datasets. Unlike algorithms that fo-
cus on distributed learning in either the big data
or big model setting (but not both), our scheme
partitions both the data and model variables si-
multaneously. This not only leads to faster learn-
ing on distributed clusters, but also enables ma-
chine learning applications where both data and
model are too large to fit within the memory of
a single machine. Furthermore, our scheme al-
lows worker machines to perform additional up-
dates while waiting for slow workers to finish,
which provides users with a tunable synchroniza-
tion strategy that can be set based on learning
needs and cluster conditions. We prove the cor-
rectness of such strategies, as well as provide
bounds on the variance of the model variables
under our scheme. Finally, we present empirical
results for latent space models such as topic mod-
els, which demonstrate that our method scales
well with large data and model sizes, while beat-
ing learning strategies that fail to take both data
and model partitioning into account.

1 Introduction
Machine Learning applications continue to grow rapidly,
in terms of both input data size (big data) as well as model
complexity (big models). The big data challenge is already
well-known — with some estimates putting the amount
of data generated on the internet at 5 exabytes every two
days 1 — and much effort has been devoted towards learn-
ing models on big datasets, particularly through stochas-

1
http://techcrunch.com/2010/08/04/schmidt-data/

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

tic optimization techniques that randomly partition the data
over different machines. Such techniques have been the
subject of much theoretical scrutiny [13, 19, 1, 10]. On the
other hand, the big model issue, which is about learning
models with an extremely large number of variables and/or
parameters — such as the Google Brain deep network with
over 1B parameters [6] — has just started to gain greater
attention, and recent papers on this subject have primarily
focused on intelligent partitioning of the model variables in
order to minimize network synchronization costs [15, 6],
albeit not always with theoretical backing.

Although big data and big models are both crucial research
foci, there are few distributed machine learning efforts that
explicitly consider both aspects in conjunction, with a no-
table example being the partitioned matrix factorization al-
gorithm of Gemulla et al. [8], which divides the input ma-
trix X into independent blocks that do not overlap on rows
or columns — thus allowing the factors AB = X to be
updated correctly in parallel. More generally, in the big
data, big model setting, the model variables may not all
fit into a single machine’s memory, which in turn imposes
additional constraints on how the data is partitioned. Fur-
thermore, careless partitioning of model variables across
distributed machines imposes significant network synchro-
nization costs [15], which are required whenever dependent
variables or datapoints are placed on separate machines. If
we are to effectively partition both data and model, it fol-
lows that we must carefully examine and exploit the inter-
dependencies between data and model variables.

In this paper, we investigate the theoretical and algorith-
mic challenges for learning big latent space models on big
data over a distributed cluster. We develop and analyze a
stochastic optimization approach for such models express-
ible in a matrix form, such as topic modeling and dictio-
nary learning. Our proposed algorithm, Fugue, exploits
the structures of the model in question to partition the in-
put data and model variables over the cluster, in a man-
ner that automatically balances inter-machine network syn-
chronization costs with performing useful computational
work, even when the worker machines are not equally ca-
pable (e.g. because of different hardware or other concur-

http://techcrunch.com/2010/08/04/schmidt-data/

Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data

rently running programs), or the data cannot be evenly par-
titioned (e.g. due to the dependency structure of the model).

Fugue solves the “last reducer” or “straggler” issue in dis-
tributed systems, in which some worker machines can be
much slower than others (because of cluster heterogeneity,
or because other jobs are running on the same machine),
causing faster workers to waste computational cycles wait-
ing for them. Instead, our algorithm ensures that the faster
workers will continue to perform useful work until the last
reducer finishes — and if the last reducer is unable to finish,
it can be restarted without affecting program correctness,
while the faster workers continue doing work. Beacuse
Fugue has modest synchronization and communication re-
quirements, it is easy to implement on top of common
distributed computing systems such as Hadoop — yet it
can also be applied to specialized systems for big Machine
Learning, such as parameter servers [9, 5, 2, 18], in order
to further improve their performance. Finally, our theoreti-
cal and empirical analysis confirms that Fugue can provide
faster convergence on a variety of latent space problems in
ML; furthermore, careful control of inter-worker synchro-
nization can lead to even faster convergence, which opens
the door to intelligent exploitation of fine-grained synchro-
nization schemes (such as the aforementioned parameter
servers).

2 Related Work
Most existing literature is focused on learning under either
big data or big model conditions, but rarely both together.
Of the papers that focus on big data, most of them exploit
data point indepedence to construct stochastic distributed
optimization schemes with little need for inter-machine
synchronization. For example, the PSGD algorithm [19]
is completely data parallel and requires absolutely no inter-
machine communication, therefore making it trivial to im-
plement. However, in practice, one can almost always ob-
tain faster convergence with some inter-machine commu-
nication, as our experiments will show. Another impor-
tant class of methods are the fixed-delay algorithms [1, 13]
in which machines communicate with a central server (or
each other) in a fixed ordering. This fixed ordering is a se-
rious practical limitation, because all machines will be held
up by slowdowns or failures in just one machine. In con-
trast, our algorithm ensures that all machines continue to
do useful work even under such conditions. Most impor-
tantly, unlike these big data algorithms, our algorithm can
partition model variables (and not just datapoints) across
machines, which is absolutely critical for massive models
that cannot fit onto a single machine.

For learning on big models, the general strategy is to ex-
ploit the fact that each model variable usually depends on
only a small number of other variables, and then partition
model variables in a way that limits the number of depen-
dencies that cross machines. The GraphLab system [15]
is a good example of this concept, but it requires ma-

chine learning algorithms to be rewritten into “vertex pro-
grams”, which can be awkward or even difficult for some
algorithms. Furthermore, there has been little theoreti-
cal analysis on machine learning algorithms running under
GraphLab. The Google Brain project [6] provides another
example of the need for model partitioning, this time for
a custom-built deep network meant for image and video
feature extraction. However, the paper does not provide
general partitioning strategies for arbitrary models. Finally,
we note that the Hogwild paper [17] provides a theoretical
analysis of certain issues related to model partitioning —
specifically, the effect of errors produced when two worker
threads update the same variable simultaneously. Aside
from that, the paper does not provide or analyze model par-
titioning strategies, while their experiments only cover the
shared-memory, single-machine setting.

Finally, there are papers that tackle big data and big model
issues together, such as the partitioned matrix factorization
algorithm of Gemulla et al. [8], to which our work is most
closely related. Unlike Gemulla et al., our algorithm allows
worker machines to perform useful variable updates contin-
uously, without blocking or waiting for any other machine
to complete its assigned task. This property is exception-
ally beneficial on very large clusters, where machines of-
ten fail or slow down for any number of reasons. Thus,
our algorithm is not bottlenecked by the slowest machine,
unlike [8]. Furthermore, we provide substantially richer
theoretical analysis, including convergence and variance
bounds with constraints and analysis of the effect of non-
blocking workers. In particular, work by Murata [16] lays
the foundation for variance analysis of SGD algorithms, by
providing variance bounds over datapoint selection.

A special class of big ML systems are the parameter
servers, which provide a distributed shared-memory inter-
face for large numbers of model parameters [2, 18], but per-
form no variable scheduling themselves. Recent work on
parameter servers has led to new, theoretically-sound com-
putational models such as Stale Synchronous Parallelism
(SSP) [9, 5], which is fundamentally related to Fugue in
that both allow faster workers to perform additional work,
without being held up by slower workers. The main dif-
ference between SSP and Fugue is that SSP is employed
to reduce inter-machine communication regardless of how
updates are scheduled, whereas Fugue is used to intelli-
gently schedule updates while assuming limited capacity
for inter-machine communication. In future work, we in-
tend to explore how Fugue and such computational mod-
els can be combined to tackle big data+model problems of
even greater scale.

3 Fugue — Slow-Worker Agnostic Learning
for Big Models on Big Data

The key principle behind Fugue is to exploit independent
or weakly-dependent blocks of data, variables and parame-
ters. For example, a probabilistic graphical model can con-

Abhimanu Kumar, Alex Beutel, Qirong Ho, Eric P. Xing

tain many latent variables and parameters that capture the
modeler’s generative assumptions about large datasets. In
order to tackle problems of such scale, we need to exploit
independence structures present in the data and model, so
as to partition both over a distributed cluster.

Before describing our partitioning strategy, we motivate
our method with examples of popular latent space models
recently gaining much attention. Consider Topic Model-
ing (TM) [4]: given a document by vocabulary data matrix
Y (with the rows normalized to sum to 1), we want to
decompose it into two matrices: docs by topics π (which
are model variables) and topics by vocabulary β (which
are parameters). We formulate this task as an optimization
problem with simplexial and non-negativity constraints:
argminπ,βL(Y, π, β) = ||Y − πβ||pp (1)

s.t. ∀i, j, k
X
k

πi,k = 1,
X
j

βk,j = 1, πi,k ≥ 0, βk,j ≥ 0,

where ‖ · ‖PP is an `p norm, typically `2. Fugue exploits
structure in the form of blocks of document-word pairs
YI,J , in order to partition the topic model. We note that
other matrix-decomposition-based algorithms for topic
modeling also exist, such as the spectral decomposition
method of Anandkumar et al. [3]. Another example is
Dictionary Learning (DL) [11], in which the goal is to
decompose a signal matrix Y into a dictionary D and a
sparse reconstruction α:

argminα,DL(Y, α,D) =
1

2
||Y −Dα||22 + λ||α||1 (2)

s.t. ∀j,DT
j Dj ≤ 1.

Here, blocks of sample-feature pairs YI,J form the
primary exploitable structure. A third example is multi-
role or Mixed-Membership Network Decomposition
(MMND), where an N × N adjacency matrix Y is
decomposed into an N × K matrix θ, whose i-th row
is the normalized role-vector for node i, and a K × K
role matrix B. Together, θ,B characterize the behavior of
every node in the network, and the optimization problem is:

argminθ,BL(Y, θ,B) =
1

2
||Y − θBθ>||22 (3)

s.t. ∀i,
X
j

θij = 1, θi,j ≥ 0.

The subgraphs YI,J between node sets I and J are the
basic unit of partitioning used by Fugue.

The main difference between such latent space models
and matrix factorization problems (unconstrained or non-
negative) is that latent space models usually have more con-
straints: simplexial constraints in the case of topic mod-
eling and mixed-membership network decomposition, and
bounded inner product in the case of dictionary learning.
To handle these, our distributed learning algorithm sup-
ports projection steps to ensure the final solution always
satisfies the constraints. Some distributed algorithms have
explicit theoretical guarantees under projection [13, 1], but
involve complex synchronization schemes that are ineffi-
cient on large clusters and difficult to deploy on common

Y π

β

Sub-Epoch 1/3

Block 1
Block 2 Block 3

Y π

β

Sub-Epoch 2/3

Y π

β

Sub-Epoch 3/3

Figure 1: Partitioning strategy for data Y , model variables π,
and parameters β. We show one epoch broken into multiple
sub-epochs (3 in this case). Each sub-epoch is further divided
into (colored) blocks, such that the data Yi,j (with its associated
variables πi,· and parameters β·,j) from one block do not share
rows/columns with data Ya,b from another block. Taken together,
all blocks from all sub-epochs cover every element of Y, π, β.

systems like Hadoop. Others, such as Parallel Stochas-
tic Gradient Descent (PSGD) [19], lack explicit projection
theory but work well in practice; furthermore, they have
simple synchronization requirements, making them suit-
able for large cluster deployments.

3.1 Partitioning and Scheduling Algorithm

We now explain how Fugue partitions a big data+model
problem into indepedent blocks, followed by how it sched-
ules these blocks for a flexible number of updates on each
worker. We stress that Fugue is platform-agnostic: it can
be implemented on top of Hadoop, MPI, or even parameter
servers and distributed key-value stores — essentially, any
platform with programmer control2 over how data, vari-
ables and parameters are partitioned and scheduled for up-
dates. Our experiments use Hadoop, in order to demon-
strate that Fugue is highly efficient even without using spe-
cialized big ML platforms.

High-level overview. To learn latent space models effec-
tively on a distributed cluster, we must exploit the interde-
pendence of parameters and variables. As a running exam-
ple, consider the topic modeling objective L(Y, π, β): we
can divide the data matrix Y into a sequence of sub-epochs,
where each epoch consists of blocks that do not overlap on
parameters β and variables π, and where the union over all
epochs covers the entire matrix (Figure 1). This blocking
strategy is attributed to Gemulla et al. [8], and it permits
multiple machines to perform stochastic gradient descent
(SGD) on different blocks in parallel, on a Hadoop cluster.
However, it requires all workers to process a roughly equal
number of data-points per block, which leads to problems
with slow workers. In this paper, we intend to address this
limitation. Our proposed algorithm allows faster workers
to process extra data-points in their assigned block, which
maximizes the cluster’s computational efficiency.

At a high level, our algorithm proceeds one epoch at a time,
performing SGD on all blocks within an epoch in parallel.
In order to satisfy the problem constraints, we must inter-
leave projection steps with the SGD algorithm. In this re-

2Systems that do not provide programmer control over parti-
tioning/scheduling, e.g. GraphLab, are unsuitable for Fugue.

Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data

spect, the parameters β and variables π must be handled
differently: while the simplexial projection for variables
π can be performed by each worker independently of oth-
ers, the simplexial projection for the parameters β requires
workers to repeatedly synchronize with each other. This
cannot be done through the standard MapReduce program-
ming model, so our Hadoop implementation deviates from
the MapReduce scheme and allows workers to write to the
Hadoop Distributed File System (HDFS) in order to com-
municate projection information with each other. We find
that this scheme works well in practice, while dedicated,
memory-based synchronization systems such as parameter
servers [5, 2, 18] have the potential to perform even better.

Partitioning strategy. More formally, let Ψ collectively
refer to the variables and parameters π, β, and let ψ refer to
individual elements of Ψ. These definitions will make the
subsequent analysis easier to understand. Thus, we rewrite
the topic modeling objective L as:

ψ(t+1) = ψ(t) − ηt∇LYi,j (ψ(t)), (4)

and we apply parameter/variable projections each time we
execute Eq. (4). Assuming the `2 norm, the differential of
ψ with respect to π at a single data point Yi,j is

(∇LYi,j (ψ))σ =


−2(Yi,j −

P
k πi,kβk,j)β`,j if σ = πi,`

0 if σ = πi′,`, i 6= i′

(5)

where σ is the element of π being differentiated, and
(∇LYi,j (ψ))σ =

∂LYi,j
∂σ . The differentials with respect to

σ = βj,` are similar. From these equations, we observe
that the SGD update for πi,` at a particular datapoint Yi,j
depends only on a small subset of the variables and param-
eters: specifically, πi,k, βk,j where k ∈ 1, . . . ,K and K is
the number of topics we chose. Notice that the π all come
from the same row i as Yi,j , while the β all come from the
same column j. Furthermore, the SGD updates for πi,` are
zero for any datapoint Ya,b where a 6= i. A similar obser-
vation holds for the parameters: the SGD update for βr,j is
zero for any datapoint Ya,b where b 6= j.

These observations lead to the following key insight: we
can perform SGD on two datapoints Yi,j and Ya,b at the
same time, provided i 6= a and j 6= b — in other words,
as long as the datapoints do not overlap on their rows or
columns. An intuitive proof goes like this: SGD updates on
Yi,j only touch the variable row πi,· and the parameter col-
umn β·,j , and both of them do not overlap with Ya,b’s vari-
able row πa,· and parameter column β·,b. In other words,
the SGD updates on Yi,j and Ya,b touch disjoint sets of vari-
ables π and parameters β. Furthermore, each πi,· in row i
only ever depends on other π in the same row i, and sim-
ilarly for β·,j and other β in column j. We therefore con-
clude that all quantities associated with row i and column
j, namely Yij , πi·, β·j , are completely independent of the
quantities from row a and column b, namely Yab, πa·, β·b.
Hence, datapoints with disjoint rows and columns can be
simultaneously used for SGD updates [8].

From the perspective of data, model and parameter par-
titioning, we have essentially partitioned datapoints Y ,
model variables π and parameters β into independent “col-
lections” Cij , where i is a row index and j is a column in-
dex. In other words, the collection Cij contains Yij , πi·, β·j ,
and can be “processed” (meaning that we run SGD on Yij
to update πi· and β·j) in parallel with any other collection
Cab where a 6= i, b 6= j.

We note that the above scheme applies to Dictionary Learn-
ing with only slight modification. For Mixed-Membership
Network Decomposition, the presence of the symmetric
term θBθT presents additional challenges. Instead, we re-
place θBθ> with θC where C := Bθ>, and recover B
post-optimization via pseudoinversion: B = Cθ(θ>θ)−1.
The inversion cost is reasonable since θ>θ isK×K, while
K is rarely ≥ 1000 in practice.

Distributed update scheduling. Since collections Cij
with disjoint rows/columns can be processed simultane-
ously, let us consider grouping them into multiple blocks
Sb ⊆ Y , such that the blocks have disjoint rows/columns
(Figure 1). While we cannot process collections Cij
within the same block in parallel (because they might share
rows/columns), we can process collections from differ-
ent blocks in parallel, as they are guaranteed to be non-
overlapping. Thus, if we managed to construct P non-
overlapping blocks, we can spawn P workers to perform
SGD in parallel. Although it is impossible to find a set of
non-overlapping blocks that covers all of Y , we can find
multiple disjoint sets of non-overlapping blocks that, taken
together, cover Y completely (Figure 1). We call these sets
sub-epochs, which are processed sequentially (while the
blocks within a sub-epoch are processed in parallel). An
epoch is a sequence of sub-epochs that fully covers Y .

Fugue differs from Gemulla et al. in that within a sub-
epoch, we allow different worker-blocks to perform vary-
ing numbers of SGD updates per collection Cij (whereas
Gemulla et al. require equal numbers of updates per
worker). This makes our algorithm much more efficient
whenever there are slow worker machines (which are com-
mon in large clusters), since faster workers can keep run-
ning until synchronization, rather than wasting computa-
tional time waiting for slower workers to catch up. The full
algorithm is shown in Algorithm 1, and we shall prove that
it converges, along with several other important properties.

4 Theoretical Analysis
We now analyse Fugue (Algorithm 1), and prove that
our strategy of allowing multiple SGD iterations on each
data/variable/parameter collection Cij = {Yij , πi·, β·j}
leads to faster convergence (under reasonable conditions).
Furthermore, we analyze the variance of the model state Ψ
under Fugue, and show that it remains bounded under cer-
tain assumptions. Briefly, the variance can be attributed to
two aspects of our partitioning strategy: (1) running mul-

Abhimanu Kumar, Alex Beutel, Qirong Ho, Eric P. Xing

Input : Y, β, π, sub-epoch size d
π ← π0, β ← β0
Block Y, π, β into corresponding w blocks
while not converged do

Pick step size ηS
Pick w blocks(S1, ..., Sw) to form sub-epoch S
for b = 0, . . . , w − 1 in parallel do

Run SGD on the training points Yij ∈ Sb
// (until every block is ready to synchronize)
// Workers can use datapoints in Sb multiple times while waiting
Apply appropriate projections
// (e.g. on variables π in topic modeling)

end
Apply appropriate projections
// (e.g. on parameters β in topic modeling)

end

Algorithm 1: Fugue, our slow-worker agnostic learning al-
gorithm, applied to topic modeling.

tiple blocks within a sub-epoch in parallel, and (2) split-
ting the data matrix into a sequence of sub-epochs. These
variance bounds distinguish our analysis from Gemulla et
al. [8], who did not provide such bounds for their blocking
strategy. We will show that allowing additional iterations
on fast workers is better than waiting for slow workers, by
proving that the model state Ψ’s variance converges to zero
under an appropriate step-size sequence.

Assume we havew worker processors, and that in each sub-
epoch, every processor is assigned to a distinct block i —
henceforth, we shall use index i to refer interchangeably to
processors or blocks. We now define the following terms:

Definition 1 : Key states and parameters

• ni, κi and Nw: Let ni be the number of datapoints that
worker i touches (with repetition) in its assigned block,
before transitioning to the next sub-epoch. In other words,
if worker i was assigned n datapoints, and touches each
point κi ≥ 1 times on average, then

ni = κin and Nw =

wX
i=1

ni (6)

• ηt: SGD step size at iteration t. An iteration is defined as
one SGD update on one datapoint.

• ∇L(ψ(t)): Exact gradient at iteration t.
• δL(t)(V (t), ψ(t)): Stochastic gradient at iteration t, i.e.
∇LYi,j (ψ(t)) for some i, j.

• εt: Error due to stochastic update at iteration t,h
∇L(ψ(t))− δL(t)(V (t), ψ(t))

i
.

• ψ(t) : Model state ψ (see Eq. 4) at iteration t.

We now introduce V (t)(ψ(t+1), ψ(t)), a state potential
function defined over a previous state ψ(t), a future state
ψ(t+1), and the data points y(t) picked at iteration t.

Definition 2 : State Potential Function (V)

V (t) encodes the probability that ψ(t) will be updated to
ψ(t+1) when the algorithm performs the stochastic update
over datapoint y(t). We also define an ni-dimensional state
potential V =

(
V (t+1), V (t+2) . . . V (t+ni)

)
, which en-

codes the probability distribution of updates caused by all

ni iterations in block i of a sub-epoch (assuming that block
i starts at iteration t+ 1).

Next, assumptions on the error terms εt and step sizes ηi:

Assumption 1 : Errors and Step-sizes

• Martingale difference error εt: The error terms εt form a
martingale difference sequence.

• Variance bound on εt: For all t, we have E[ε2t] < D.
• Step size ηt assumption:

P
η2
t <∞.

The condition that error terms are a martingale difference
sequence is weaker (easier to satisfy) than assuming er-
ror terms εt are independent of each other. The martin-
gale difference assumption means that the stochastic gra-
dient δL(t)(V (t), ψ(t)), when conditioned on the initial
model state ψ(0) and previous gradients δL(i)(V (i), ψ(i))
for all i < t, depends only on the current model stae
ψ(t). Fugue satisfies this martingale assumption because
our blocking strategy ensures that parallel parameter up-
dates (from different blocks) never overlap on the same el-
ements of ψ. For models with more complex dependency
structures (e.g. arbitrary graphical models), the martin-
gale assumption may allow for parallelization opportunities
even when such non-overlapping structure is absent.

4.1 Convergence of Fugue
First, using the definition of V t, we obtain the relation

p(ψ(t+1)|ψ(t))dψ(t) = p(V (t)(ψ(t+1), ψ(t)))dV (t)(ψ(t+1), ψ(t)).
(7)

We can interpret this equation as follows: fix an particular
update event ψ(t) → ψ(t+1), then V (t)(ψ(t+1), ψ(t)) repre-
sents the event that some datapoint y(t) gets chosen, while
dV (t)(ψ(t+1), ψ(t)) is the probability that said choice leads
to the update event ψ(t) → ψ(t+1). The intuition here
is that V (t) = V (t)(ψ(t+1), ψ(t)) is a function that keeps
track of the state of ψ(t) and ψ(t+1), and that depends on
the datapoint Yi,j(t) chosen by the SGD update.

Next, by definition of a martingale difference sequence:

E
[
∇L(ψ(t))− δL(t)(V (t), ψ(t)) |

δL(i)(V (i), ψ(i)), ψ(i), i < t, ψ(t)
]

= 0,

E [εt|εi, i < t] = 0. (8)

In other words, the error term εt has zero expectation when
conditioned on previous errors. We now have the necessary
tools to provide a convergence guarantee:

Theorem 1 The stochastic updates ψ(t+1) = ψ(t) −
ηt∇LYi,j (ψ(t)) from algorithm 1 and the exact gradient
descent updates ψ(t+1) = ψ(t) − ηt∇L(ψ(t)) converge to
the same set of limit points asymptotically, given that the
error terms εt are a martingale difference sequence, and
E[ε2

i] < D (bounded variance), and
∑
η2
i <∞.

We defer the proof to the appendix. This theorem says that,
asymptotically, the error terms cancel each other out, and

Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data

therefore our stochastic algorithm will find the same set of
optima as an exact gradient aglrotihm. The theorem also
easily extends to cover projections, by applying the Arzela-
Ascoli theorem and considering the limits of converging
sub-sequences of our algorithm’s SGD updates [12].

4.2 Variance of ψ within a sub-epoch
We now bound the variance of the model state ψ, when it
is updated inside block i in a sub-epoch.

Assumption 2 Assume for simplicity that the parameter
being updated in block i is univariate. The analysis can
be easily extended to multivariate updates.

Theorem 2 Within block i, suppose we update the model
state ψ using ni datapoints (Eq. 6). Then the variance of
ψ after those ni updates is

V ar(ψt+ni) =V ar(ψt)− 2ηtniΩ0(V ar(ψt))

− 2ηtniΩ0CoV ar(ψt, δ̄t) + η2
t niΩ1

+O(η2
t ρt) +O(ηtρ2

t) +O(η3
t) +O(η2

t ρ
2
t)︸ ︷︷ ︸

∆t

Constants Ω0,Ω1 are defined in Theorems 1, 2 in the Appendix.

The proof is left to the Appendix. Note that the constants
Ω0 and Ω1 are independent of the datapoints picked or the
iteration number; they only depend on the global optima
of the problem. The above theorem consists of 4 important
terms on the first line, plus another 4 cubic (or higher order)
terms ∆t that quickly converge to zero and can be ignored.
The basic intuition is as follows: when the algorithm is
far from an optimum, V ar(ψ(t)) and CoV ar(ψ(t), δ̄t) are
large, so the 2nd and 3rd terms dominate and the variance
of ψ decreases quickly. When close to an optimum, the
constant 4th term with Ω1 dominates, causing the algorithm
to oscillate unless the step size η2

t is small — which we
have ensured via shrinking step sizes

∑
η2
t < ∞. Hence,

the 4th term also shrinks to zero as t → ∞, and therefore
the variance of ψ also decreases when close to an optimum.

4.3 Variance of ψ between sub-epochs
Let us consider the variance of ψ across entire sub-epochs.
First, note that within a sub-epoch, two blocks Zi and Zi′
are independent if for each datapoint y ∈ Zi and y

′ ∈ Zi′ ,
the following holds:

∇Ly(ψ) = ∇Ly(ψ − η∇Ly′ (ψ))
and ∇Ly′ (ψ) = ∇Ly′ (ψ − η∇Ly(ψ)) (9)

In other words, even when the model state ψ is perturbed
by the stochastic gradient on y′, the stochastic gradient on
y must not change (and vice versa). By our earlier argu-
ment on collections Cij = {Yij , πi·, β·j}, this condition
holds true for any pair of points from distinct blocks. Thus,
within a sub-epoch, distinct blocks Zi and Zi′ operate on
disjoint subsets of Ψ, hence their update equations are
independent of each other. At the end of a sub-epoch

Sn+1, the algorithm synchronizes the model state ΨSn+1

by aggregating the non-overlapping updates δψiSn+1
from

all blocks Sin+1. Therefore, we can write the variance
V ar(ΨSn+1) at the end of sub-epoch Sn+1 as

V ar(ΨSn+1) =
wX
i=1

V ar(ψ
i
Sn+1

) (10)

=
wX
i=1

»
V ar(ψ

i
Sn

)− 2ηSnniΩ
i
0(V ar(ψ

i
Sn

))

− 2ηSnniΩ
i
0(CoV ar(ψ

i
Sn
, δ̄
i
Sn

)) + η
2
Sn
niΩ

i
1 + ∆Sin

–
=V ar(ΨSn)− 2ηSn

wX
i=1

niΩ
i
0V ar(ψ

i
Sn

)

− 2ηSn

wX
i=1

niΩ
i
0CoV ar(ψ

i
Sn
, δ̄
i
Sn

) + η
2
Sn

wX
i=1

niΩ
i
1 +O(∆Sn),

where the 2nd line is proven in the Appendix. The interpre-
tation is similar to Theorem 2: when far from an optimum,
the negative terms dominate and the variance shrinks; when
close to an optimum, the positive Ωi1 term dominates but is
also shrinking because of the step sizes η2

Sn
. Again, we can

ignore the higher-order terms O(∆Sn).

4.4 Slow-worker agnosticism
We now explain why allowing fast processors to do
extra updates is beneficial. In Eq. 10, we saw that the
variance after each sub-epoch S depends on the number of
datapoints touched ni and the step size ηSn . Let us choose
ηSn small enough so that the variance-decreasing terms
dominate, i.e.

2ηSn

wX
i=1

niΩ
i
0V ar(ψ

i
Sn) + 2ηSn

wX
i=1

niΩ
i
0CoV ar(ψ

i
Sn , δ̄

i
Sn)

> η2
Sn

wX
i=1

niΩ
i
1. (11)

This implies V ar(ΨSn+1) < V ar(ΨSn). Hence, using
more datapoints ni decreases the variance of the model
state ψ, provided that we choose ηSn so that Eq. 11 holds.
This is easy to satisfy: the RHS of Eq. 11 is O(η2

Sn
) while

the LHS is O(ηSn), so we just set ηSn small enough.

Let us now take stock: Eq. 11 tells us that using addi-
tional datapoints in any block can decrease the variance of
Ψ, while Theorem 1 tells us that the algorithm converges
asymptotically, regardless of the number of processors and
the number of datapoints assigned to each processor. Be-
cause the algorithm converges, decreasing the variance will
only move Ψ towards an optimum, and therefore it makes
sense for faster processors to perform more updates (with
appropriate choice of step size ηSn) and decrease the vari-
ance of Ψ, rather than wait for slow processors to finish.
However, if the step size ηSn is set incorrectly, then using
too many updates ni could increase the variance of Ψ.

It is important to note that Fugue is not equivalent to fully
asynchronous computation (e.g. Hogwild [17]), in which
every worker can proceed to arbitrary data points, vari-
ables and parameters, without regard to what other workers
are doing. Fugue requires that all workers advance to the

Abhimanu Kumar, Alex Beutel, Qirong Ho, Eric P. Xing

next sub-epoch at the same time, in order to preserve inde-
pendence between parallel blocks (and thus the martingale
condition). Bounded-synchronization schemes like Stale
Synchronous Parallel [9, 5] may allow Fugue to advance
workers to different sub-epochs at different times, thus in-
creasing the effectiveness of fast workers without losing of
convergence guarantees.

5 Experiments
We compare Fugue implemented on Hadoop to three self-
implemented baselines: (a) BarrieredFugue (an extension
of Distributed SGD [8] with convergence guarantees for
projection and non-negativity constraints) on Hadoop, (b)
Parallel SGD [19] on Hadoop, and (c) constrained Matrix
Factorization on distributed GraphLab [15], a modification
of the default GraphLab MF toolkit that regularly projects
variables to maintain constraints (without altering the in-
put graph). We test all methods on our 3 latent space
models: topic modeling, dictionary learning, and mixed-
membership network decomposition. All methods were
tuned to their optimum parameters.

Compared to the baselines, our method has several theoret-
ical and practical advantages: unlike BarrieredFugue, our
algorithm allows fast workers to continue doing work while
waiting for slow workers to synchronize, and unlike PSGD,
we explicitly partition the data/variables/parameters into
collections Cij = {Yij , πi·, β·j} instead of averaging up-
dates over all data points. Finally, we note that GraphLab
is poorly-suited for implementing the simplex and inner-
product constraints required by our topic modeling, dictio-
nary learning and mixed-membership network decomposi-
tion models. This is because the constraints are over entire
matrix rows, creating dependencies over all row variables
— which is especially problematic for topic modeling, be-
cause the vocabulary matrix β has V columns, and V can
be≥ 100K words in practice. As we shall show, such long-
range dependencies hurt GraphLab’s performance, because
GraphLab picks sets of variables for updating without re-
gard to the constraints — whereas a better strategy is to
schedule as many dependent elements together as possible.

Cluster Hardware The Hadoop algorithms (ours, Bar-
rieredFugue, PSGD) were run on a Hadoop cluster with
the following machine specifications: 2x Intel Xeon E5440
@ 2.83GHz (8 cores per machine), 16GB RAM, 10Gbit
Ethernet. Because the Hadoop cluster did not support MPI
programs, we ran GraphLab on a newer cluster with the fol-
lowing machine specifications: 2x Intel Xeon E5-2450 @
2.1-2.9GHz (16 cores per machine), 128GB RAM, 10Gbit
Ethernet. Thus, the GraphLab experiments have signifi-
cantly more memory, but slightly slower processors.

Datasets Statistics for all datasets are summarized in Ta-
ble 1. For topic modeling, we simulated datasets of vari-
ous sizes, using the 300K-document NY Times dataset as
a building block. The resulting β matrices contain 102,660
columns (words), and between 1.2M to 76.8M rows (doc-

Time taken to converge

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

LDA DL MMND

T
im

e
to

 C
o

n
ve

rg
e

(s
ec

o
n

d
s)

Model

Fugue
B. Fugue

GraphLab
PSGD

 0

5x

10x

15x

20x

25x

30x

LDA DL MMND

T
im

es
 S

lo
w

er
 t

h
an

 F
u

g
u

e

Model

Fugue
B. Fugue

GraphLab
PSGD

Figure 3: Time taken by all methods to converge on the three
ML models, on an absolute scale (left) as well as a relative scale
(right). The methods plateau at these values in the respective plots
shown in figure 2. The bar for PSGD is absent in the figure as it
never reaches 0.059 and stops around objective value 0.092.

Dataset Dimensions Nonzeros Size (GB)
NyTimes 0.3 ∗ 106×102,660 0.1 ∗ 109 1.49
ImageNet 0.63 ∗ 106×1,000 0.63 ∗ 109 7.99
WebGraph 0.28 ∗ 106 × 0.28 ∗ 106 0.31 ∗ 109 4.46
NyTimes4 1.2 ∗ 106×102,660 0.4 ∗ 109 6.08
NyTimes16 4.8 ∗ 106×102,660 1.6 ∗ 109 25.12
NyTimes64 19.2 ∗ 106×102,660 6.4 ∗ 109 103.4
NyTimes256 76.8 ∗ 106×102,660 25.6 ∗ 109 421.42

Table 1: Dimension, filesize and nonzero statistics for our
datasets. The biggest dataset (NyTimes256) is approximately 0.5
terabytes. Note that the ImageNet dataset is 100% dense.

uments); zero word counts are treated as missing entries.
For dictionary learning, we used a 630,716-image (rows)
sample from ImageNet [7], with 1000 features per image
(columns). The resulting matrix is fully dense (no missing
entries). For mixed-membership network decomposition,
we used the Stanford web graph [14], with 281,903 ver-
tices (rows and columns). The resulting adjacency matrix
contains all edges, as well as 0.5% of the non-edges (all
other non-edges are treated as missing entries).

Stopping Criteria and Parameter Tuning We stop each
method when its objective value reaches 0.0065 (TM),
0.059 (MMND), or 0.49 (DL). These are the values at
which all methods were observed to plateau (Figure 2). For
parameter tuning details, please refer to the Appendix.

Results and Discussion Our results are shown and ex-
plained in Figure 2. The convergence plots reveal that
our method converges faster and to a better solution than
all three baselines, on all three ML models. The scala-
bility plots also reveal that our method converges faster
(on topic modeling) for any number of topics and docu-
ments, and generally requires fewer processors to converge
quickly. We note that GraphLab takes more than twice as
long as Fugue to converge (noting that the GraphLab ma-
chines had a slightly slower average clockspeed). More-
over, GraphLab sometimes oscillates because its local ver-
tex synchronization prevents it from applying the global
projections frequently enough.

The bottom left plot shows the minimum number of ma-
chines Fugue and GraphLab require for topic modeling on
fixed a number of documents. The primary reason for need-
ing more machines is memory, and we see that GraphLab
requires additional machines at a faster rate (despite having
128GB per 16-core machine), whereas Fugue scales much

Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data

Topic Modeling Dictionary Learning MMND
Convergence Plots Scaling in # Cores Convergence Plots Convergence Plots

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1000 2000 3000 4000 5000 6000 7000

O
b

je
ct

iv
e

V
al

u
e

Time (seconds)

Fugue
Barriered Fugue

GraphLab
PSGD

 0.0063

 0.0065

 0.0067

 0.0069

 0 1000 2000

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70

T
im

e
to

 c
o

n
ve

rg
e

(s
ec

o
n

d
s)

Number of Cores

GraphLab
B. Fugue

Fugue

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 4000 8000 12000 16000 20000

O
b

je
ct

iv
e

V
al

u
e

Time (seconds)

Fugue
Barriered Fugue

GraphLab
PSGD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000

O
b

je
ct

iv
e

V
al

u
e

Time (seconds)

PSGD
GraphLab
B. Fugue

Fugue

 0.05
 0.07
 0.09
 0.11
 0.13

 0 2500 5000

Topic Modeling
Machines Needed Scaling in # Docs Scaling in # Topics

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

GraphLab runs out of memory.
Can’t reach max size
with 96 cores.

N
u

m
b

er
 o

f
co

re
s

re
q

u
ir

ed
(1

6,
24

,3
2,

64
, o

r
96

)

Number of documents (millions)

GraphLab
Fugue

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10 20 30 40 50 60 70 80

GraphLab and
PSGD run out
of memory

T
im

e
to

 c
o

n
ve

rg
e

(s
ec

o
n

d
s)

Number of documents (millions)

PSGD
GraphLab
B. Fugue

Fugue

 0

 2500

 5000

 0 5 10 15 20

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
to

 c
o

n
ve

rg
e

(s
ec

o
n

d
s)

Rank (# of topics)

PSGD
GraphLab

Barriered Fugue (16 cores)
Barriered Fugue (8 cores)

Fugue (16 cores)
Fugue (8 cores)

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

Figure 2: Convergence and scalability plots for the three models (TM, DL, MMND), under our Fugue and baselines (BarrieredFugue,
PSGD, GraphLab). Unless otherwise stated in the plot, all methods were run with 16 cores and rank K = 25. For all topic modeling
plots except “# of Docs” and “Machines Required”, we used the NyTimes4 dataset (Table 1). The convergence plots reveal the objective
trajectory and final value of each method, while the scalability plots show how each method fares (on topic modeling) as we increase the
problem rank, number of processor cores, and data size. In the bottom left, we also show the minimum number of machines required for
a given topic modeling dataset size, for Fugue and GraphLab.

Fugue Model Wait/Sync Time Epoch Time
Dictionary Learning 32.6 471

Topic Modeling 110.6 391
MM Network Decomp. 182 692

Table 2: Comparison of synchronization time vs epoch time, for
each ML model under Fugue. Dictionary learning has the small-
est wait:epoch ratio, because the input matrix is fully dense (hence
every worker has the same workload). In contrast, Topic Model-
ing has the highest wait:epoch ratio, because the normalization
constraints on the topic-word matrix impose additional synchro-
nization costs. More waiting means faster workers perform more
updates, so TM converges in fewer iterations than DL.

more gently (even with only 16GB per 8-core machine).
This is because Fugue uses Hadoop and HDFS, so it never
loads the entire model into memory (unlike GraphLab). In
fact, GraphLab runs out of memory so quickly, that it can-
not scale past 20 million documents on a 128GB machine
(see “# of Docs” plot).

Compared to BarrieredFugue and PSGD, Fugue succeeds
beacuse it (1) it partitions both data and model variables
to account for dependencies (which PSGD lacks), while
(2) it allows faster workers to do more work before syn-
chronization (which BarrieredFugue lacks). In particular,
PSGD must hold the whole model on each machine due to
non-partitioning (a memory bottleneck for rank K ≥ 100).
Moreover, PSGD needs one machine to average all mod-
els (a computational bottleneck), hence it does not scale
well with additional cores (and does not even finish on
MMND). Figure 3 shows convergence times for Fugue,
BarrieredFugue, PSGD, and GraphLab over the three mod-
els: TM, MMND and DL. Fugue is faster by anywhere be-
tween 2.6× (vs GraphLab on TM) to 26.2× (vs GraphLab
on Dictionary Learning).

Table 2 provides insights about slow and fast workers in
Fugue. For example, dense input matrices (e.g. our dic-
tionary learning dataset) result in balanced workloads, thus
every worker is equally balanced. On the other hand, the
topic-word matrix constraints in topic modeling increase
inter-epoch synchronization times, providng an opportu-
nity for workers to conduct extra updates.

Although Fugue exhibits good performance, there remain
areas for improvement — for example, Fugue exhibits di-
minishing returns going from 16 to 32 cores on topic mod-
eling. This is due to increased synchronization costs, which
dominate the computational benefits from using additional
cores. We expect that moving from Hadoop to a parame-
ter server system [9] will alleviate the synchronization bot-
tleneck, thus allowing Fugue to harness more machines.
Furthermore, while Fugue’s row/column-wise partitioning
strategy for data/variables/parameters works well for the
latent space models we have presented, it does not apply
to all possible ML models: for example, graphical mod-
els and deep networks can have arbitrary structure between
parameters and variables, while problems on time-series
data will have sequential or autoregressive dependencies
between datapoints. In such cases, a row/column-wise par-
titioning will not work. Nevertheless, the idea and basic
theoretical analysis of grouping data, variables and param-
eters into independent collections still holds; only the par-
titioning strategy needs to be changed. This opens up rich
possibilities for future work on general-purpose partition-
ing algorithms under our framework.

Abhimanu Kumar, Alex Beutel, Qirong Ho, Eric P. Xing

References

[1] Alekh Agarwal and John C Duchi. Distributed delayed
stochastic optimization. In Decision and Control (CDC),
2012 IEEE 51st Annual Conference on, pages 5451–5452.
IEEE, 2012.

[2] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan
Narayanamurthy, and Alexander J. Smola. Scalable infer-
ence in latent variable models. In WSDM, pages 123–132,
2012.

[3] Animashree Anandkumar, Dean P Foster, Daniel Hsu,
Sham M Kakade, and Yi-Kai Liu. Two svds suffice: Spectral
decompositions for probabilistic topic modeling and latent
dirichlet allocation. arXiv preprint arXiv:1204.6703, 2012.

[4] David M Blei and J Lafferty. Topic models. Text mining:
classification, clustering, and applications, 10:71, 2009.

[5] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gre-
gory R Ganger, Garth Gibson, Kimberly Keeton, and Eric
Xing. Solving the straggler problem with bounded stale-
ness. In To appear in HotOS 14, 2013.

[6] J Dean, G Corrado, R Monga, K Chen, M Devin, Q Le,
M Mao, M Ranzato, A Senior, P Tucker, K Yang, and A Ng.
Large scale distributed deep networks. In Advances in Neu-
ral Information Processing Systems 25, 2012.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[8] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis
Sismanis. Large-scale matrix factorization with distributed
stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, KDD ’11, pages 69–77, New York, NY,
USA, 2011. ACM.

[9] Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons,
G. Gibson, G. R. Ganger, and E. P. Xing. More effective dis-
tributed ml via a stale synchronous parallel parameter server.
In Advances in Neural Information Processing Systems 26,
2013.

[10] Matt Hoffman, David M Blei, Chong Wang, and John
Paisley. Stochastic variational inference. arXiv preprint
arXiv:1206.7051, 2012.

[11] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D.
Rao, Kjersti Engan, Te-Won Lee, and Terrence J. Sejnowski.
Dictionary learning algorithms for sparse representation.
Neural Comput., 15(2):349–396, February 2003.

[12] H. Kushner and G. Yin. Stochastic Approximation and Re-
cursive Algorithms and Applications. Springer, 2003.

[13] John Langford, Alex J Smola, and Martin Zinkevich. Slow
learners are fast. In Advances in Neural Information Pro-
cessing Systems, pages 2331–2339, 2009.

[14] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and
Michael W. Mahoney. Community structure in large net-
works: Natural cluster sizes and the absence of large well-
defined clusters, 2008.

[15] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bick-
son, Carlos Guestrin, and Joseph M. Hellerstein. Distributed
GraphLab: A Framework for Machine Learning and Data
Mining in the Cloud. PVLDB, 2012.

[16] Noboru Murata. A statistical study on on-line learning. In
Online Learning and Neural Networks. Cambridge Univer-
sity Press, 1998.

[17] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J
Wright. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS, 2011.

[18] Russell Power and Jinyang Li. Piccolo: building fast, dis-
tributed programs with partitioned tables. In Proceedings
of the 9th USENIX conference on Operating systems de-
sign and implementation, pages 1–14. USENIX Associa-
tion, 2010.

[19] Martin Zinkevich, Markus Weimer, Alex Smola, and Lihong
Li. Parallelized stochastic gradient descent. Advances in
Neural Information Processing Systems, 23(23):1–9, 2010.

	Introduction
	Related Work
	Fugue --- Slow-Worker Agnostic Learning for Big Models on Big Data
	Partitioning and Scheduling Algorithm

	Theoretical Analysis
	Convergence of Fugue
	Variance of within a sub-epoch
	Variance of between sub-epochs
	Slow-worker agnosticism

	Experiments

