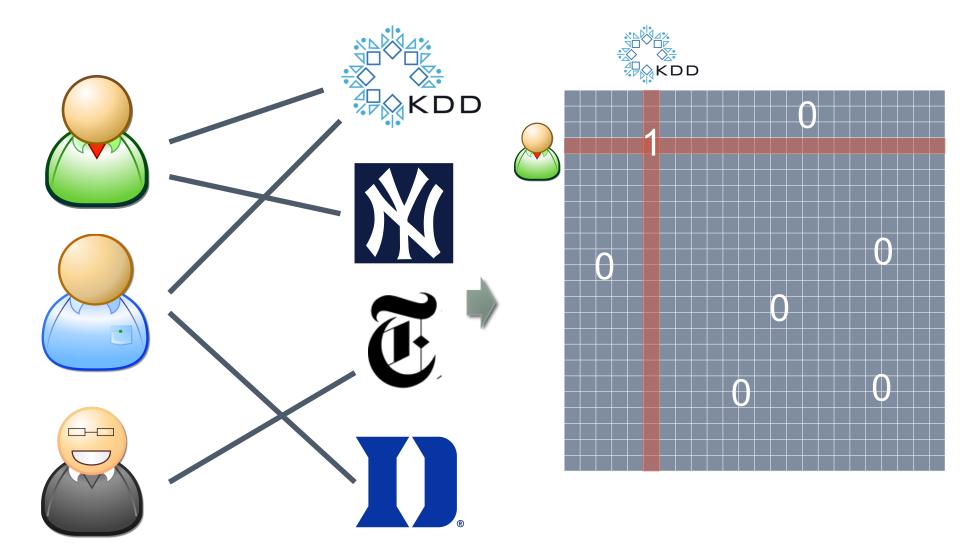


- 1. Subgraph Analysis
- 2. Propagation Methods
- 3. Latent Factor Models
 - a) Background
 - b) Normal Behavior
 - c) Abnormal Behavior

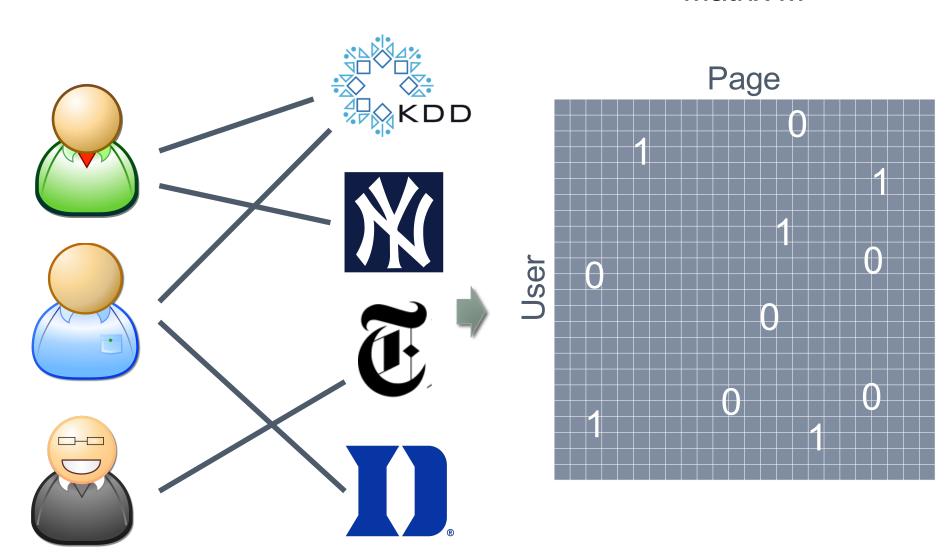
Matrix Modeling



Matrix Modeling

KDD 2015

Matrix M



Matrix Modeling

HITS

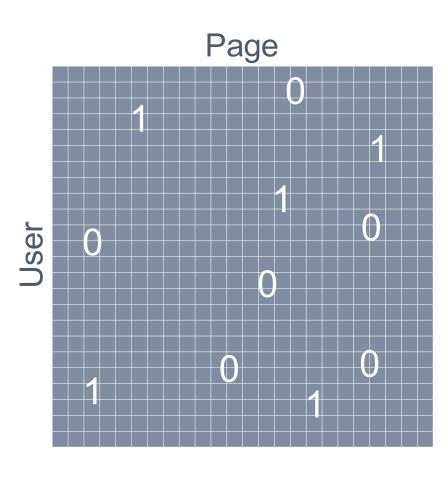
Authoritativeness \vec{v} is first eigenvector of M^TM

$$\vec{v} = cM^{\mathrm{T}}M\vec{v}$$

Hubness \vec{u} is first eigenvector of MM^T

$$\vec{u} = cMM^{\mathrm{T}}\vec{u}$$

Matrix M



Matrix Modeling

KDD 2015

HITS

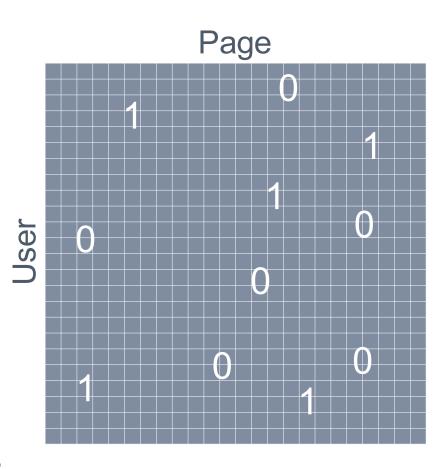
Authoritativeness \vec{v} is first eigenvector of M^TM

$$\vec{v} = cM^{\mathrm{T}}M\vec{v}$$

Hubness \vec{u} is first eigenvector of MM^T

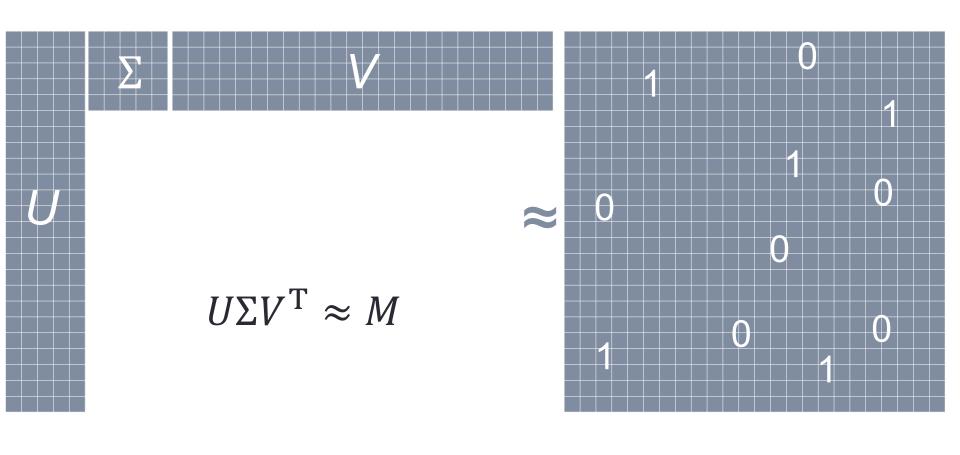
$$\vec{u} = cMM^{\mathrm{T}}\vec{u}$$

Matrix M

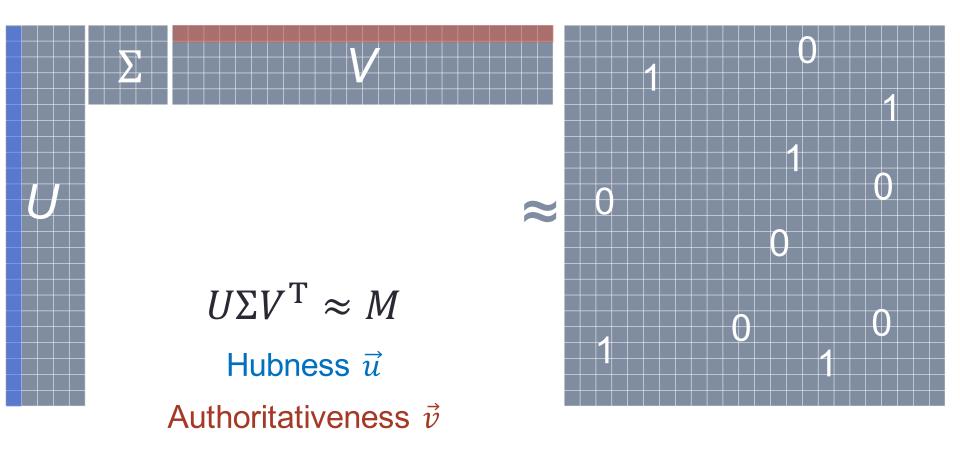


What about the other eigenvectors?

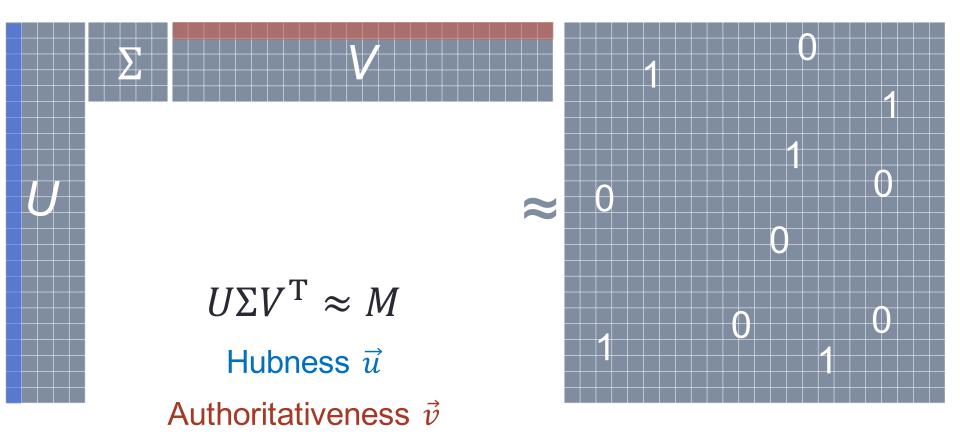
Matrix Modeling Singular Value Decomposition



Matrix Modeling Singular Value Decomposition



Matrix Modeling Singular Value Decomposition



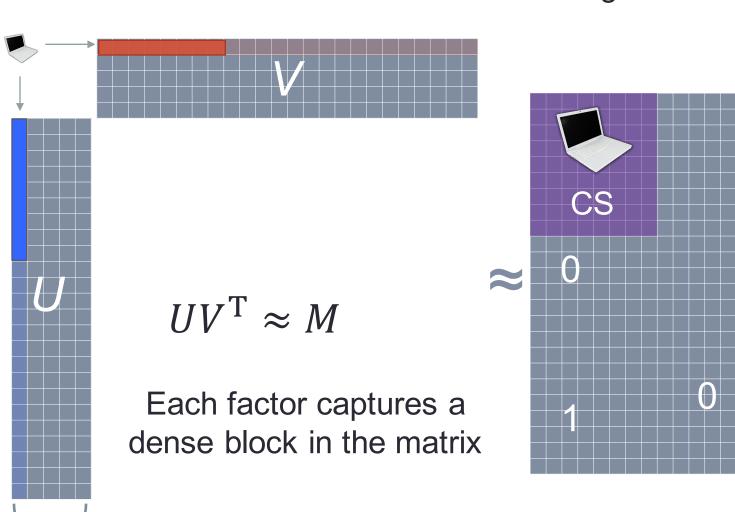
 Σ contains normalization for \vec{u} and \vec{v}

Topics

KDD 2015

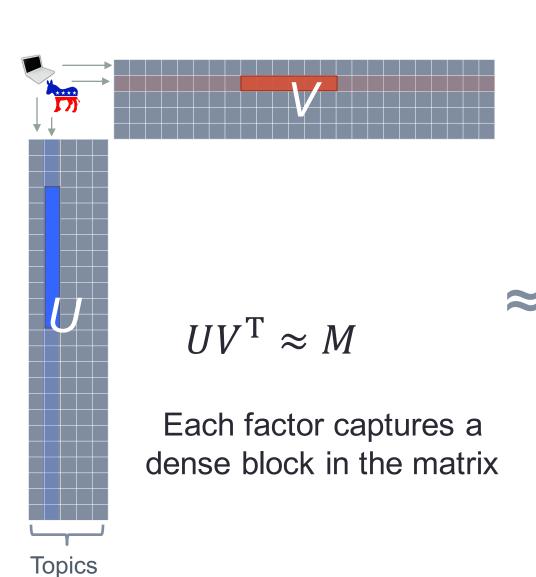
Matrix Factorization

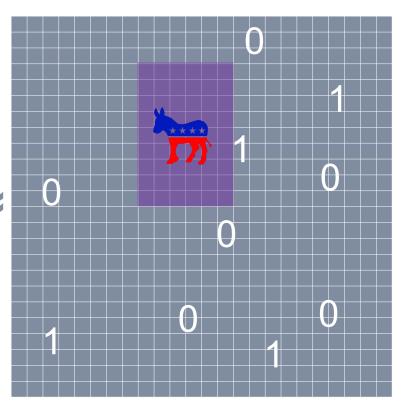
What does each eigenvector capture?



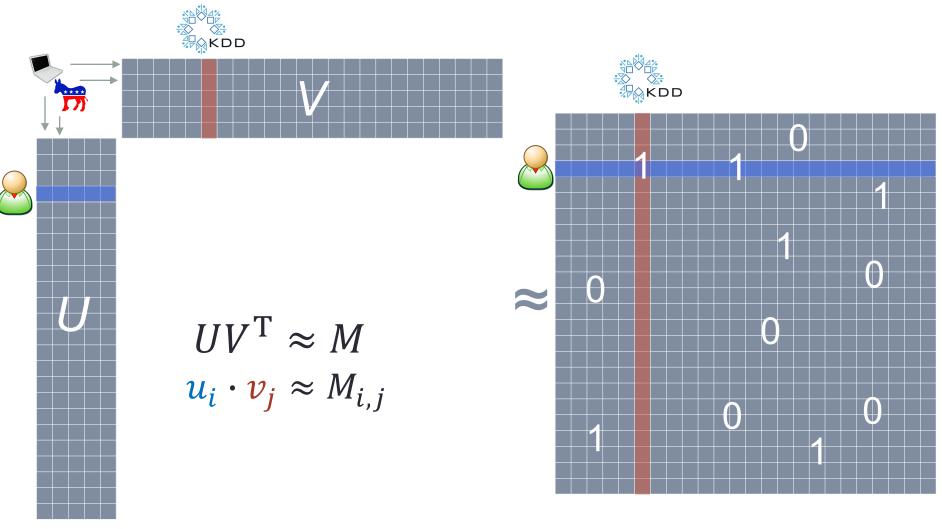
Matrix Factorization

What does each eigenvector capture?





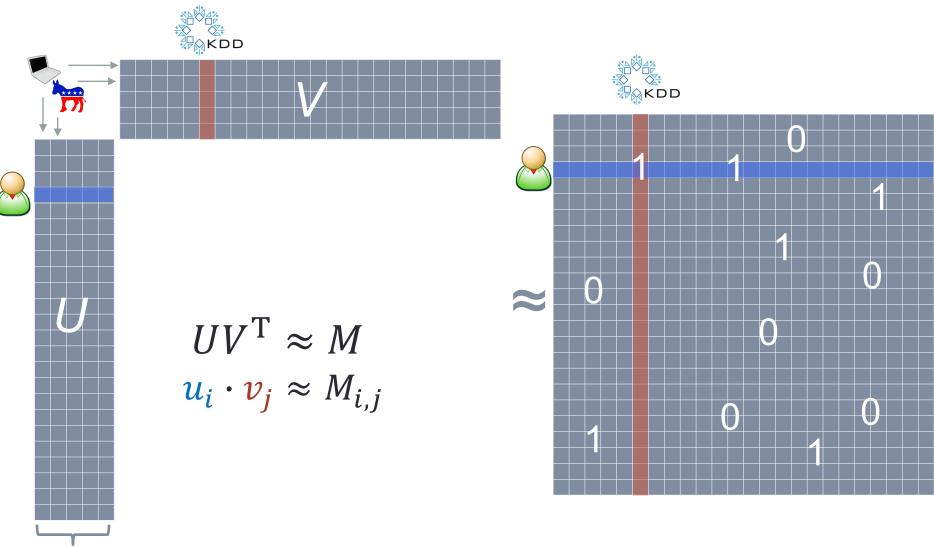
Matrix Factorization



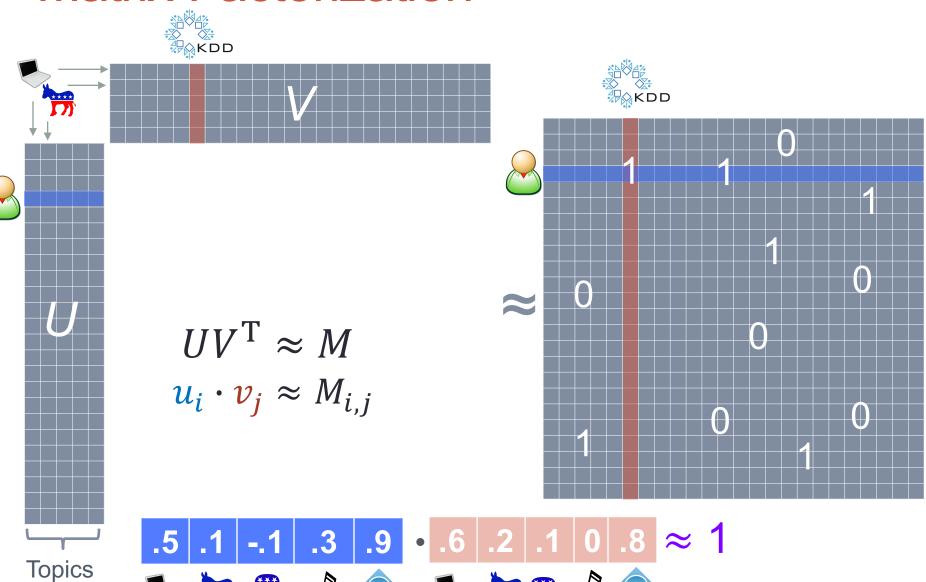
Topics

KDD 2015

Matrix Factorization

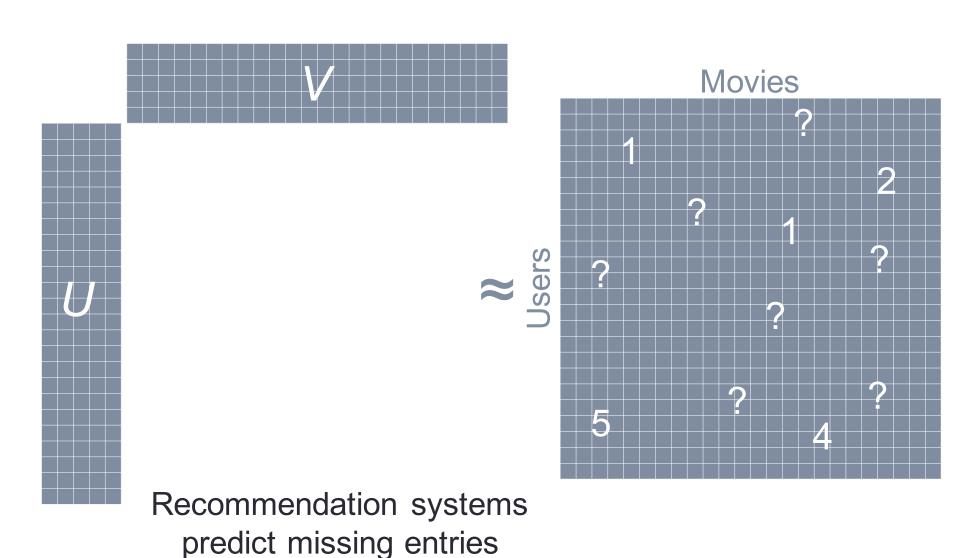


Matrix Factorization

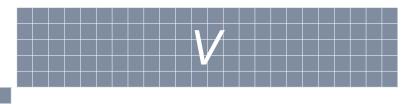


- 1. Subgraph Analysis
- 2. Propagation Methods
- 3. Latent Factor Models
 - a) Background
 - b) Normal Behavior
 - c) Abnormal Behavior

Matrix Completion

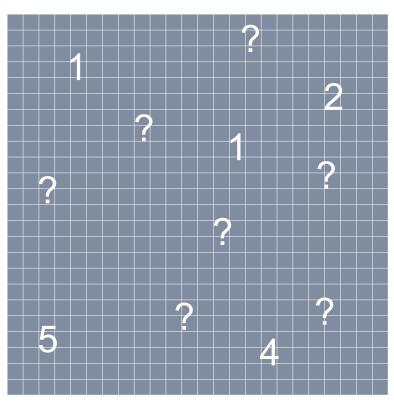


Matrix Completion



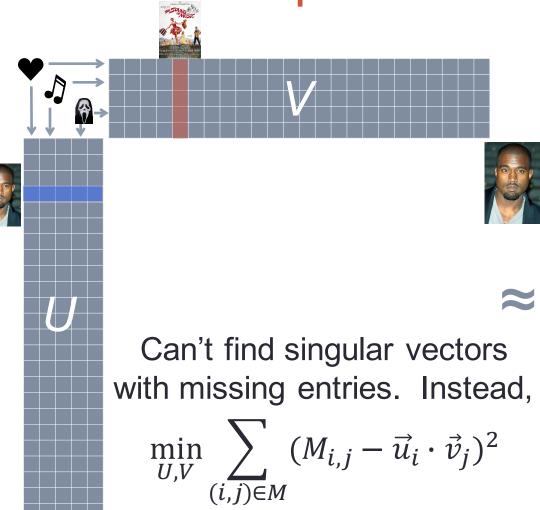
Can't find singular vectors with missing entries. Instead,

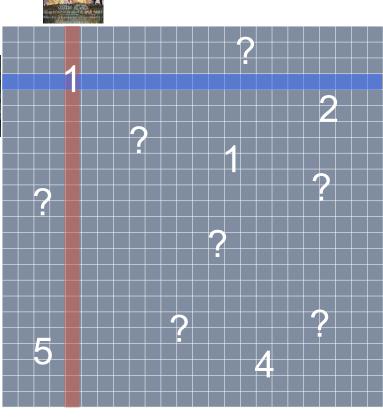
$$\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \vec{u}_i \cdot \vec{v}_j)^2$$



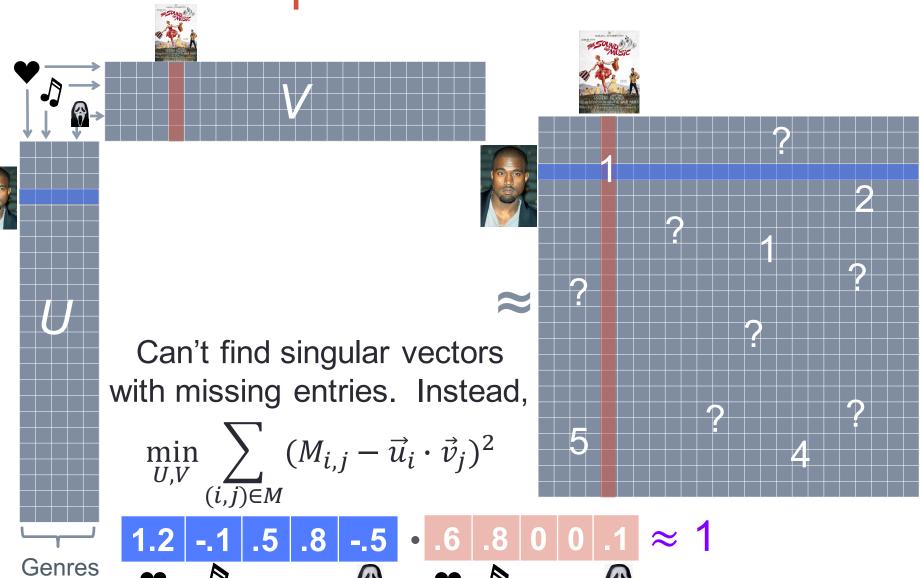
Genres

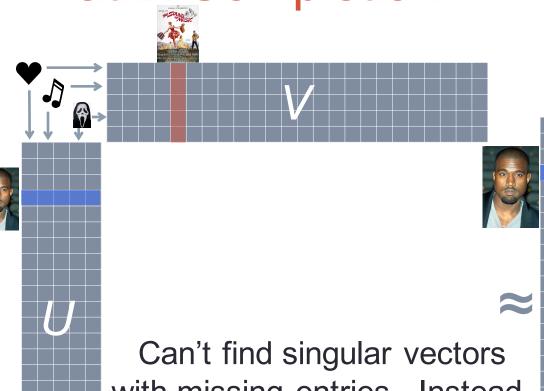
Matrix Completion





Matrix Completion

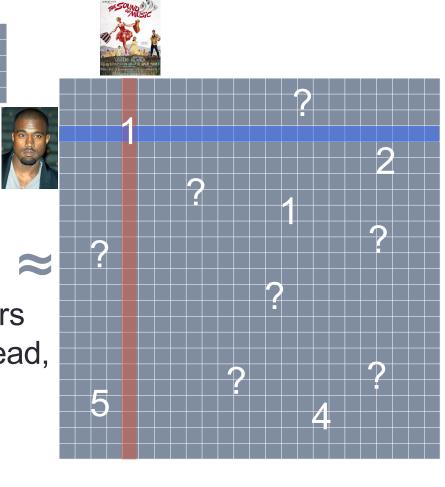


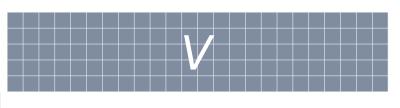


with missing entries. Instead,

$$\min_{U,V} \sum_{(i,j)\in M} (M_{i,j} - \widehat{M}_{i,j})^2$$

$$\widehat{M}_{i,j} = \vec{u}_i \cdot \vec{v}_j$$

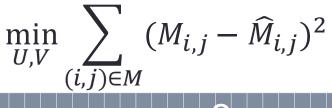


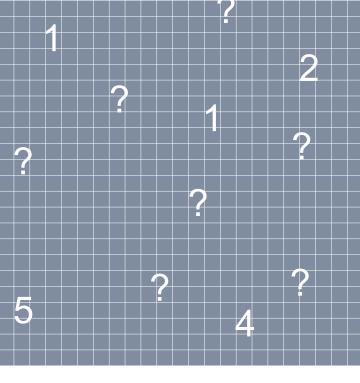


Consider additional factors:

- Dataset mean μ
- Row (user) baseline b_i
- Column (movie) baseline b_j

$$\widehat{M}_{i,j} = \mu + b_i + b_j + \vec{u}_i \cdot \vec{v}_j$$



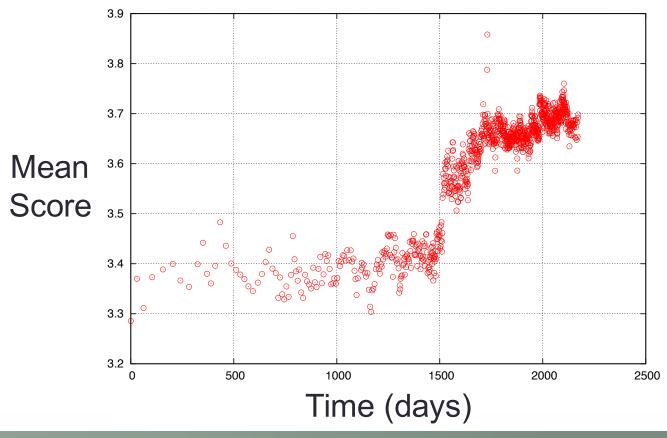


Collaborative Filtering with Temporal Dynamics Yehuda Koren *KDD* 2009

What if we know the time of the rating (time of the edge being created)?

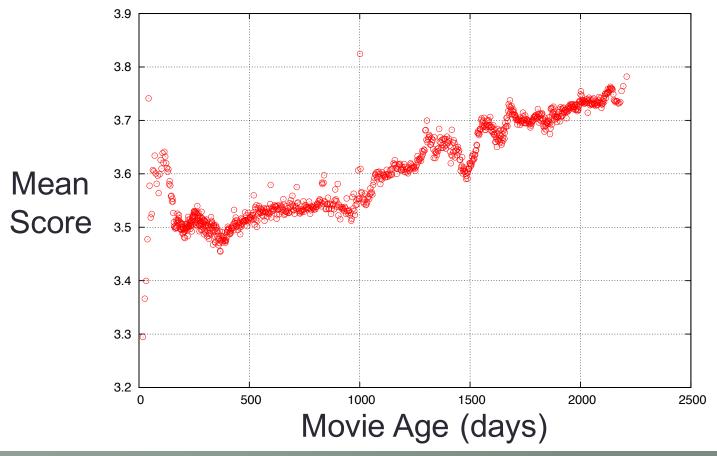
Collaborative Filtering with Temporal Dynamics Yehuda Koren KDD 2009

Mean Rating by Date (Netflix)



Collaborative Filtering with Temporal Dynamics Yehuda Koren KDD 2009

Mean Rating by Movie Age (Netflix)



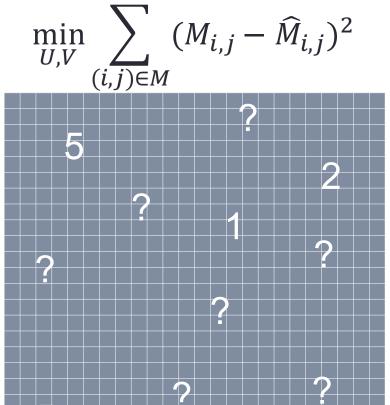
Collaborative Filtering with Temporal Dynamics Yehuda Koren KDD 2009

V

Time factors:

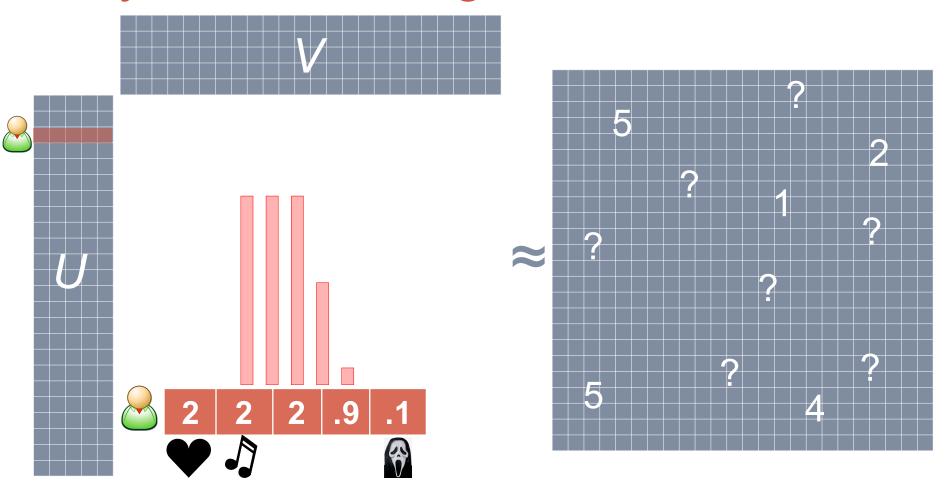
- Column (movie)- time baseline $b_{j,Bin(t)}$
- Row (user)-time baseline function $b_i(t)$

$$\widehat{M}_{i,j} = \mu + b_i + b_j + \overrightarrow{u}_i \cdot \overrightarrow{v}_j + b_{j,\text{Bin}(t)} + b_i(t)$$

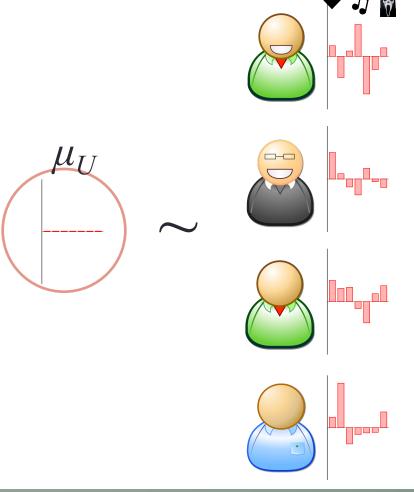


Collaborative Filtering with Temporal Dynamics Yehuda Koren *KDD* 2009

Bayesian Modeling

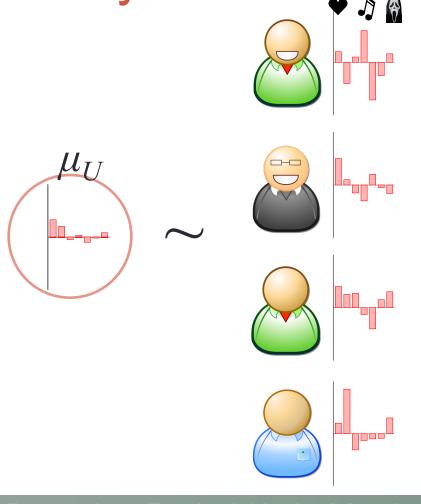


Bayesian Modeling



Sample user factors from Normal distribution

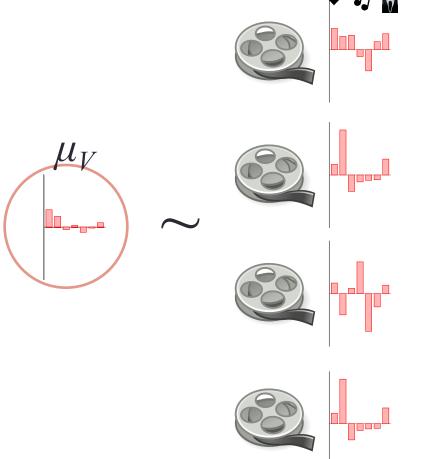
Bayesian Modeling



Sample user factors from Normal distribution

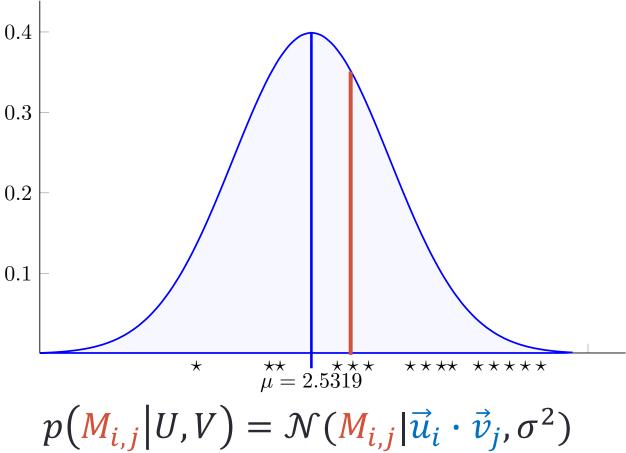
Update mean based on user factors

Bayesian Modeling

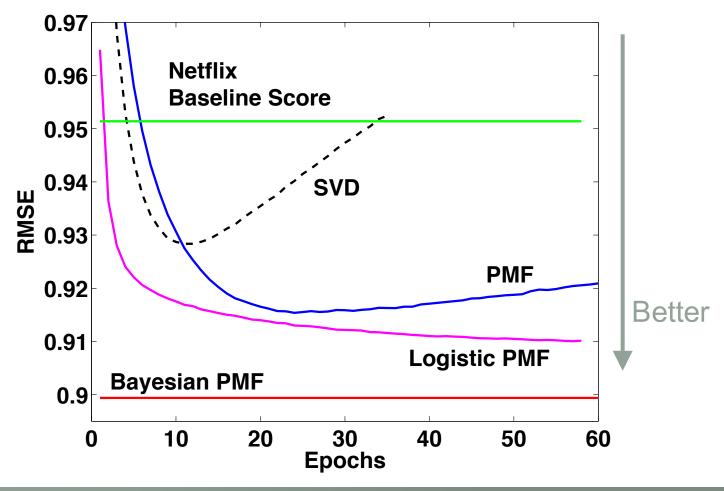


Similarly sample movie factors

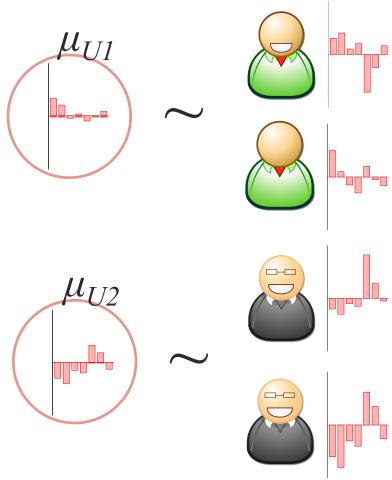
Bayesian Modeling



Bayesian Modeling



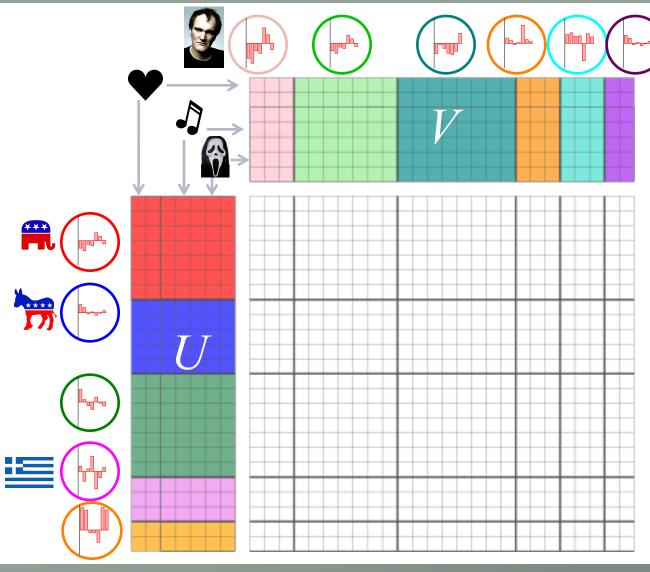
Bayesian Modeling with Co-Clustering



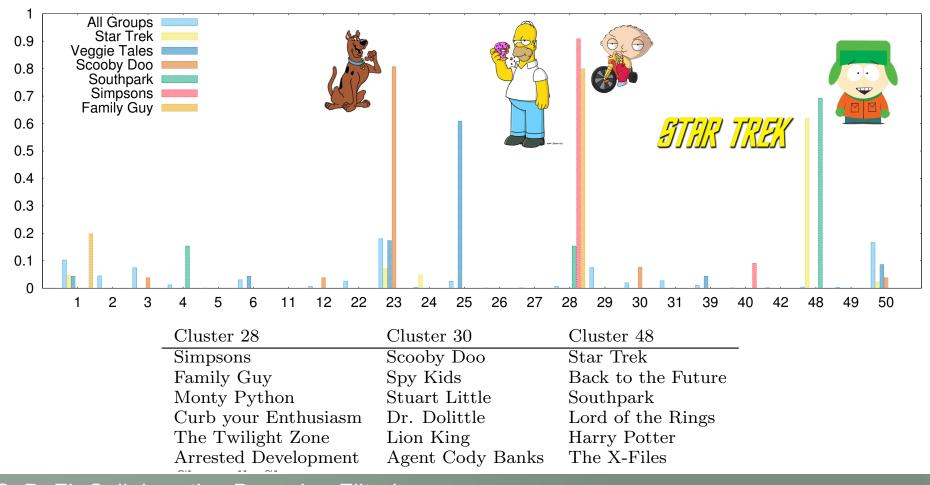
Cluster users with similar factors

IMAX[®]

KDD 2015



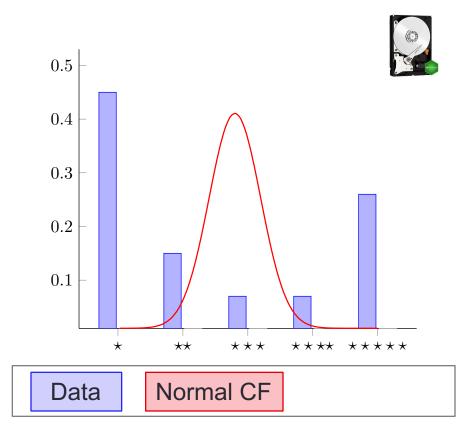
Bayesian Modeling with Co-Clustering



Online Rating Models

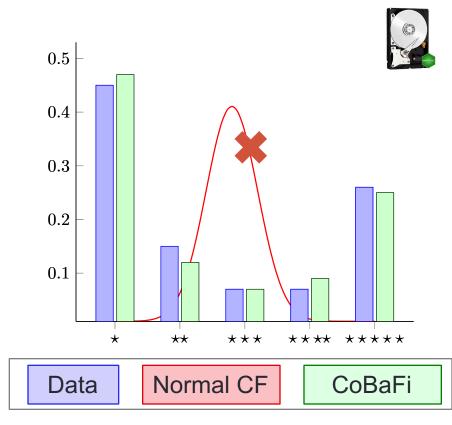
KDD 2015

Typically fit a Gaussian - Minimize RMSE



Online Rating Models

Typically fit a Gaussian - Minimize RMSE



Shape of Netflix reviews

Most Gaussian	Most skewed
The Rookie	The O.C. Season 2
The Fan	Samurai X: Trust and Betrayal

Stars

Alice Doesn't Live Here

Cadet Kelly

Money Train

Sea of Love Gilmore Girls: Season 3

Boiling Point Felicity: Season 4

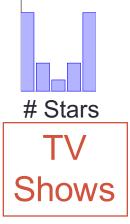
Movies

More Skewed

Aqua Teen Hunger Force: Vol. 2

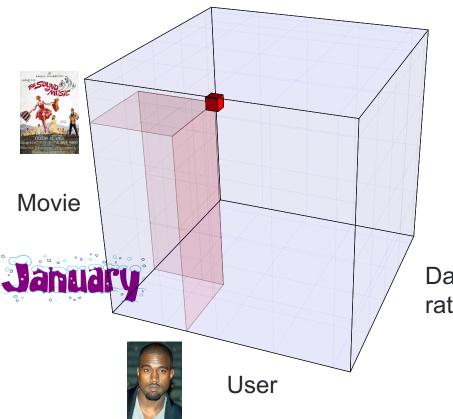
Aqua Teen Hunger Force: Vol. 2

Sealab 2001: Season 1



What is a tensor?

- Tensors are used for structured data > 2 dimensions
- Think of as a 3D-matrix



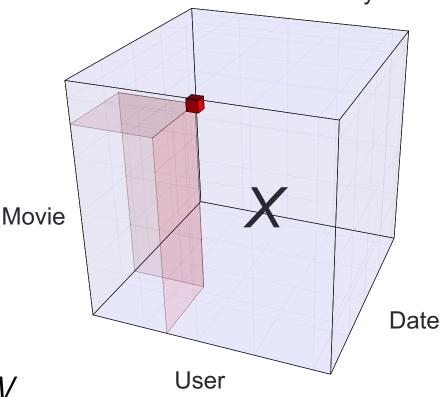
For example:

Kanye West rated The Sound of Music five stars last January.

Date of rating

Tensor Decomposition

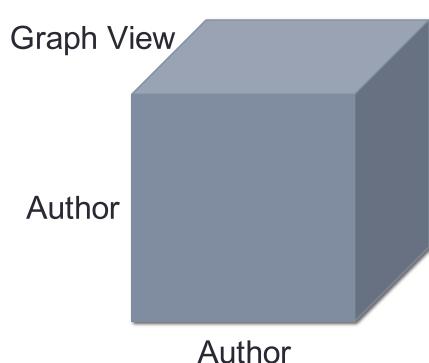
Date User Kanye West rated The Sound of Music five stars last January.



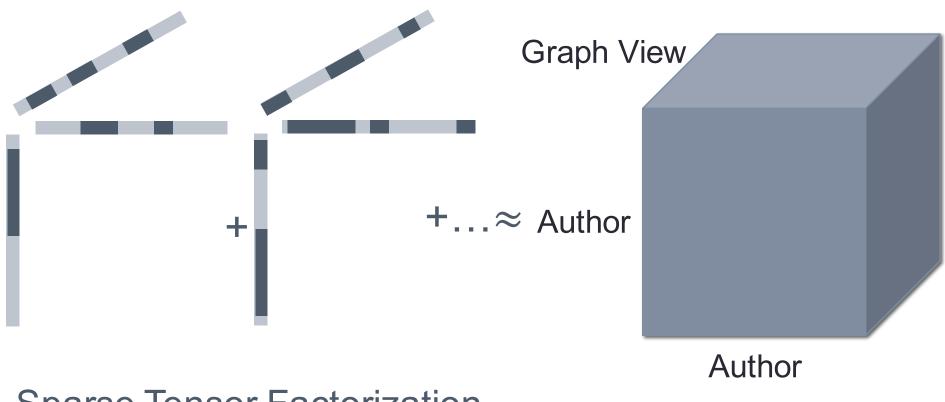
$$X_{i,j,k} pprox \sum_{r=1}^{\mathsf{Rank}} U_{i,r} V_{j,r} W_{k,r}$$

Multiple possible views of the DBLP network:

- Who-cites-whom
- 2. Co-authorship
- Using same words in title

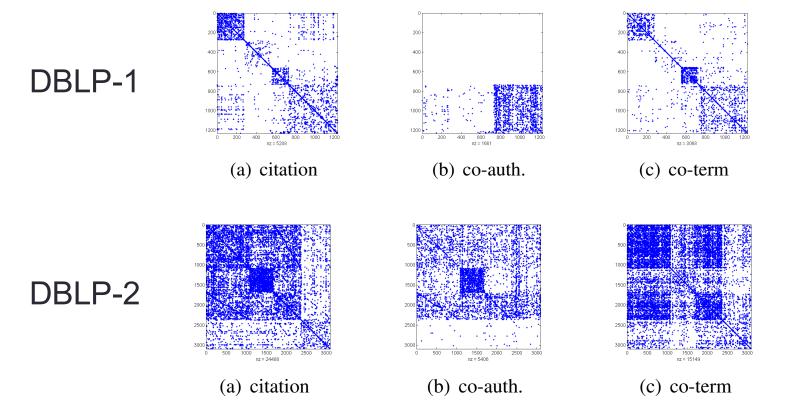


Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco FUSION 2013



Sparse Tensor Factorization

Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco *FUSION* 2013

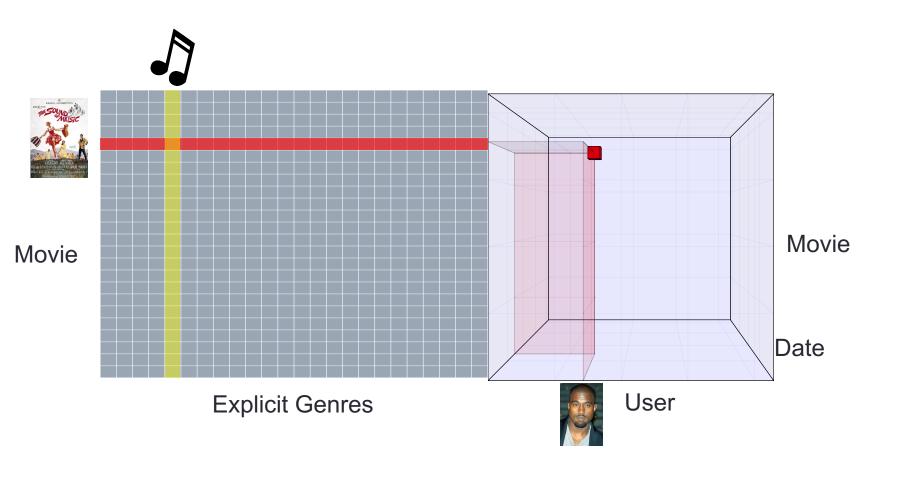


Do more Views of a Graph help? Community Detection and Clustering in Multi-Graphs Evangelos E. Papalexakis, Leman Akoglu, Dino Ienco FUSION 2013

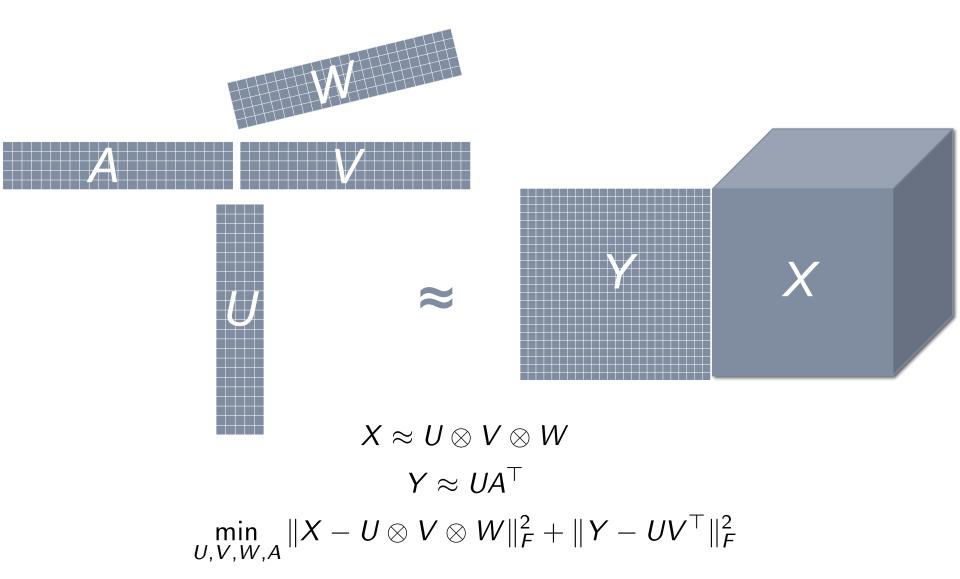
Dataset	Baseline	GraphFuse
DBLP-1	0.12	0.30
DBLP-2	0.08	0.12

Modeling Accuracy

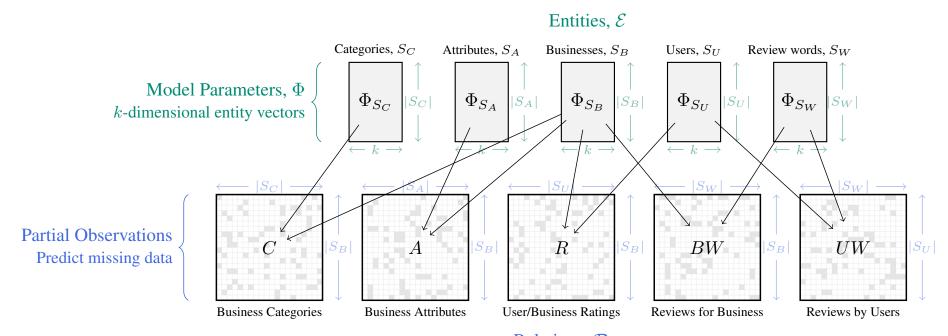
Coupled Matrix + Tensor Decomposition



Coupled Matrix + Tensor Decomposition



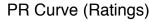
Joint Factorization

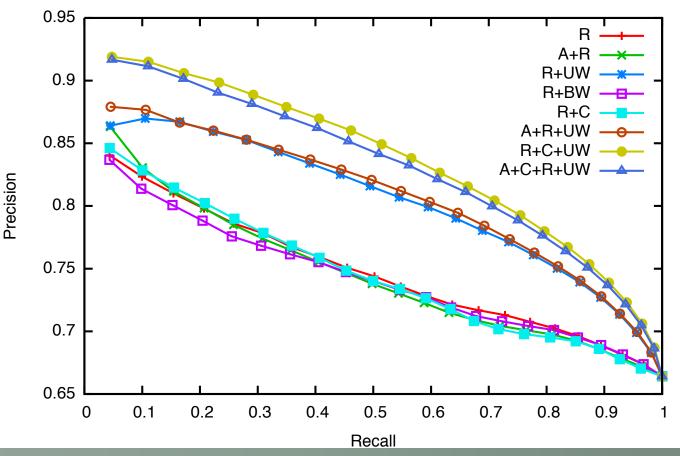


Relations, \mathcal{R}

Collective Factorization for Relational Data: An Evaluation on the Yelp Datasets Nitish Gupta, Sameer Singh

Joint Factorization





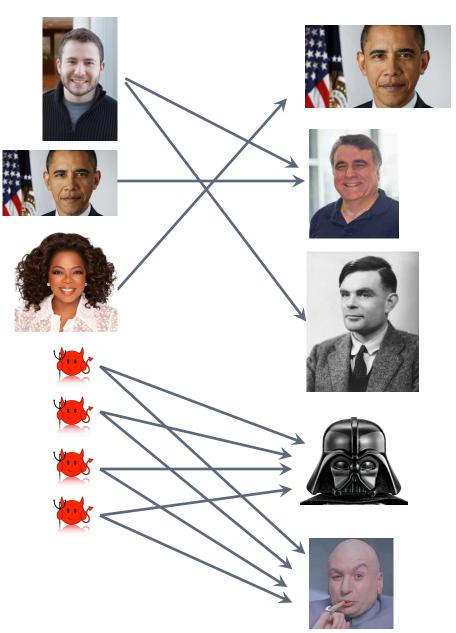
Most valuable:

- 1. Ratings
- 2. Review text
- 3. Business Categories

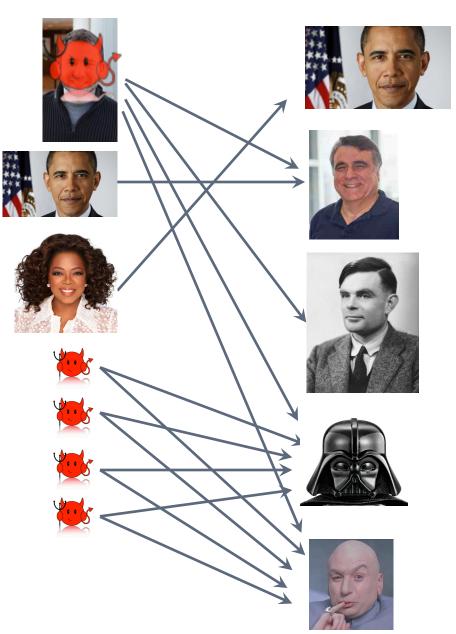
Collective Factorization for Relational Data: An Evaluation on the Yelp Datasets Nitish Gupta, Sameer Singh

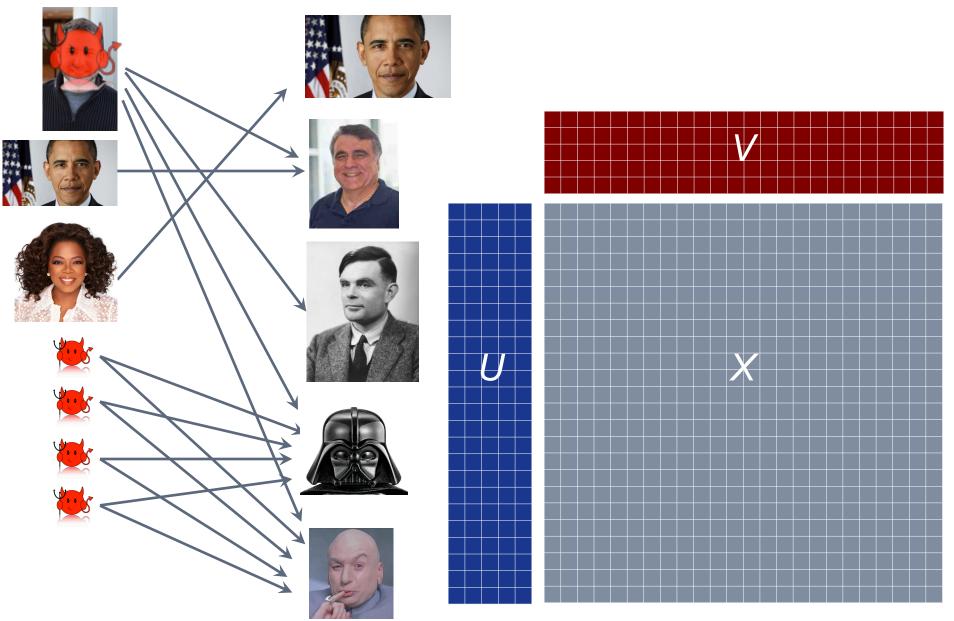
- 1. Subgraph Analysis
- 2. Propagation Methods
- 3. Latent Factor Models
 - a) Background
 - b) Normal Behavior
 - c) Abnormal Behavior

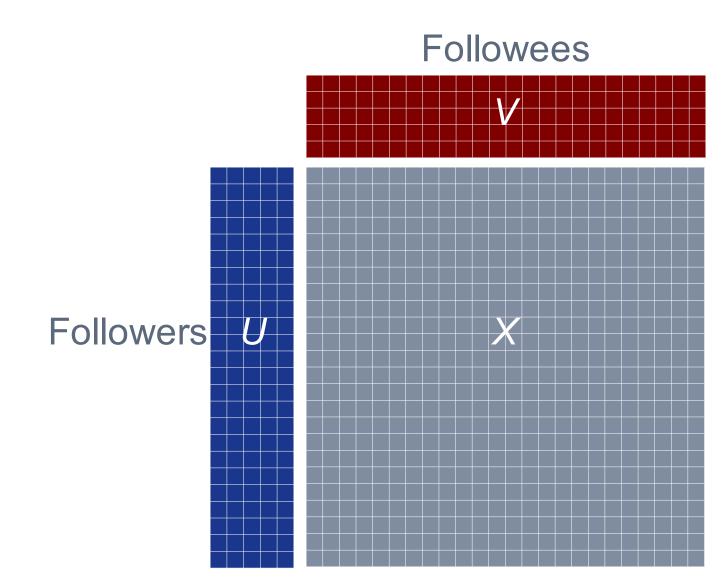
Fraud Detection

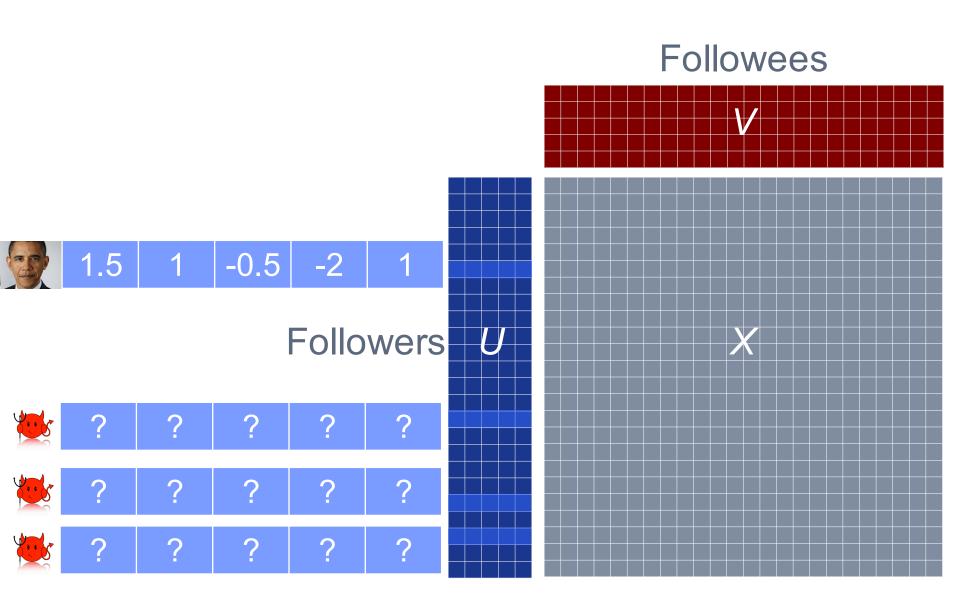


Fraud Detection

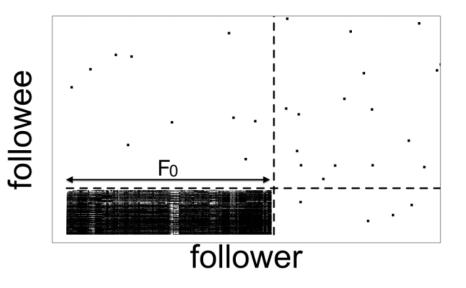




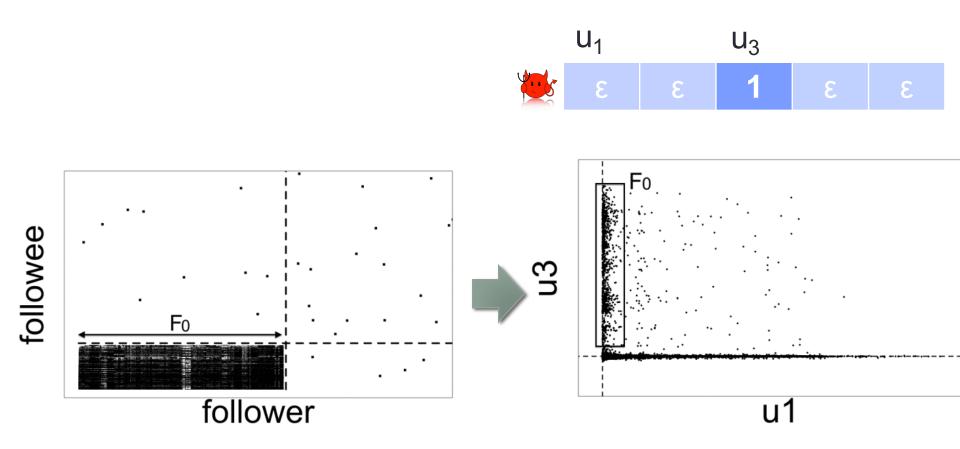




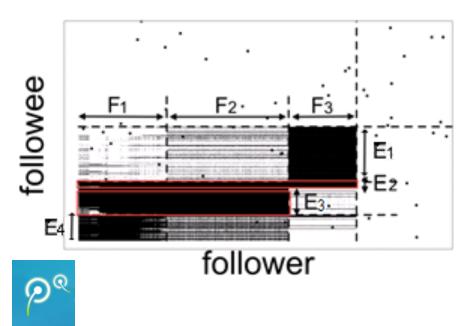
Fraud within a factorization



EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, Christos Faloutsos *PAKDD*, 2010

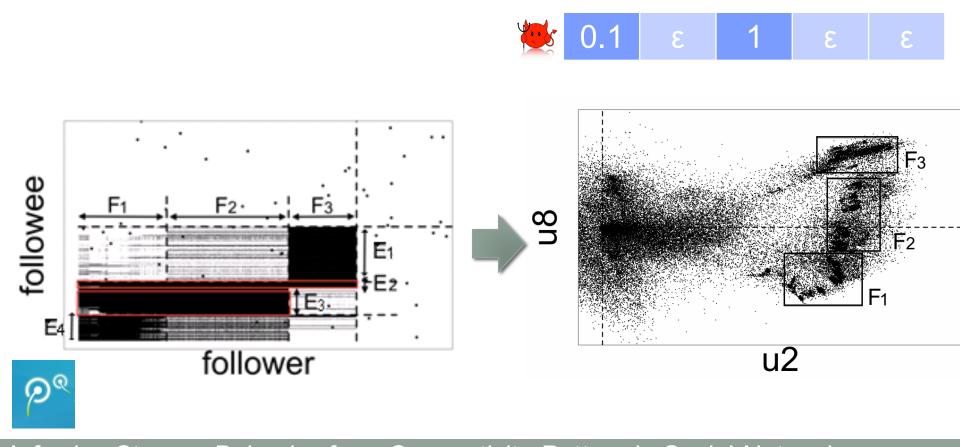


EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, Christos Faloutsos PAKDD, 2010

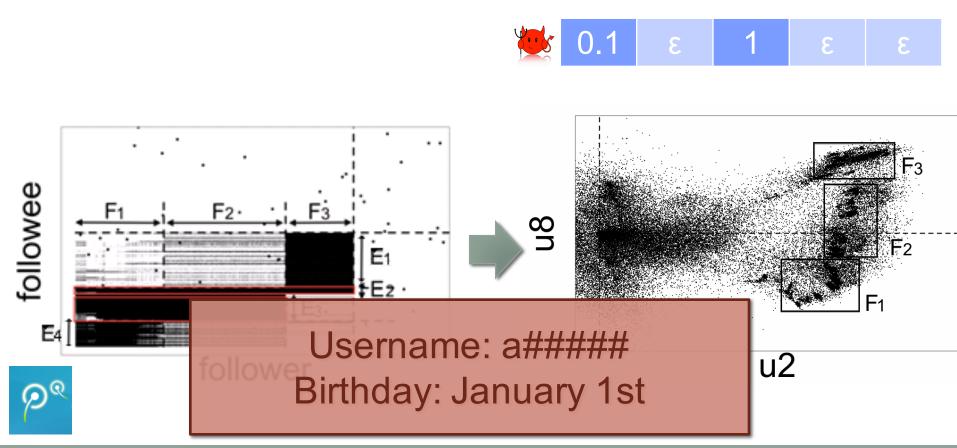


Inferring Strange Behavior from Connectivity Pattern in Social Networks

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. *PAKDD*, 2014



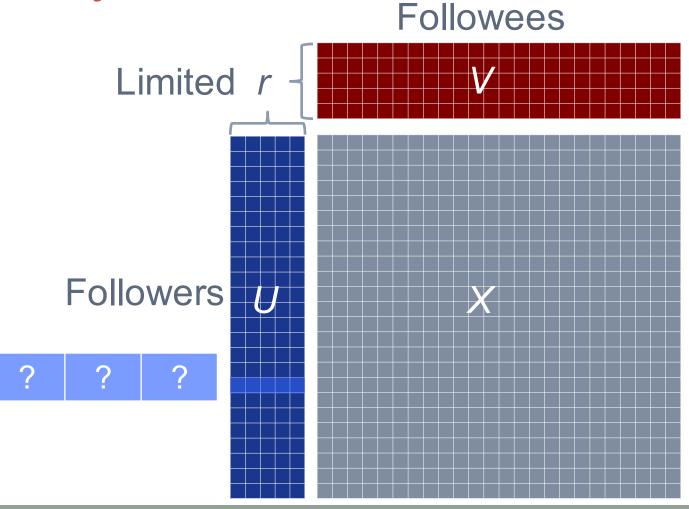
Inferring Strange Behavior from Connectivity Pattern in Social Networks Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang. PAKDD, 2014



Inferring Strange Behavior from Connectivity Pattern in Social Networks Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, Shiqiang Yang.

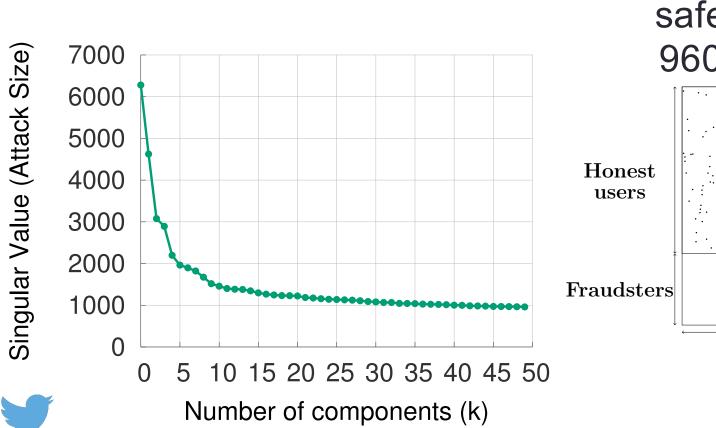
PAKDD, 2014

Complementary Fraud Detection

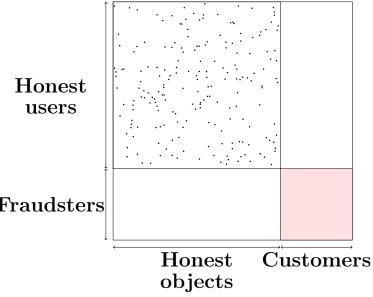


Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos *ICDM*, 2014.

Complementary Fraud Detection



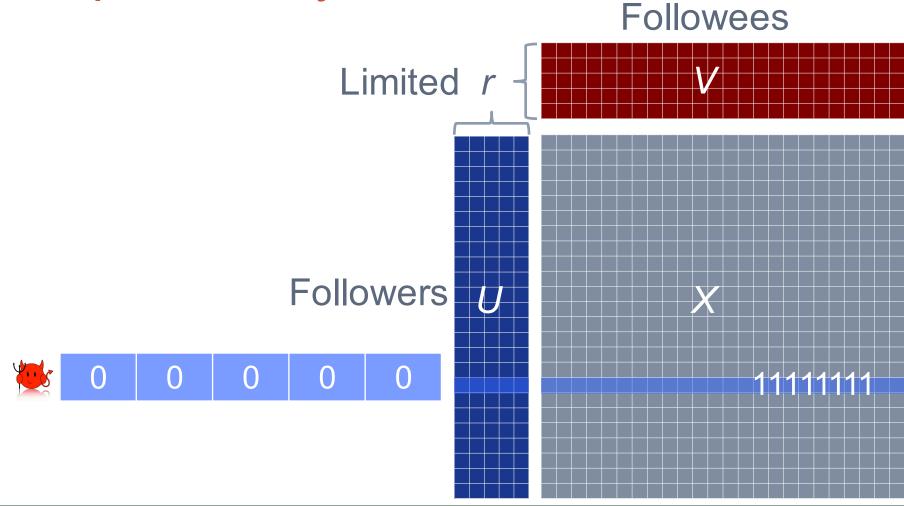
960 fraudsters safely following 960 customers



Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher,

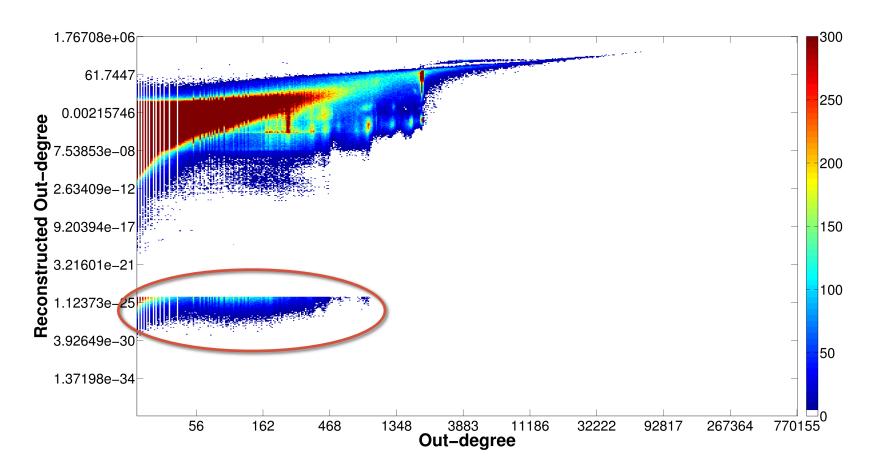
Christos Faloutsos ICDM, 2014.

Complementary Fraud Detection



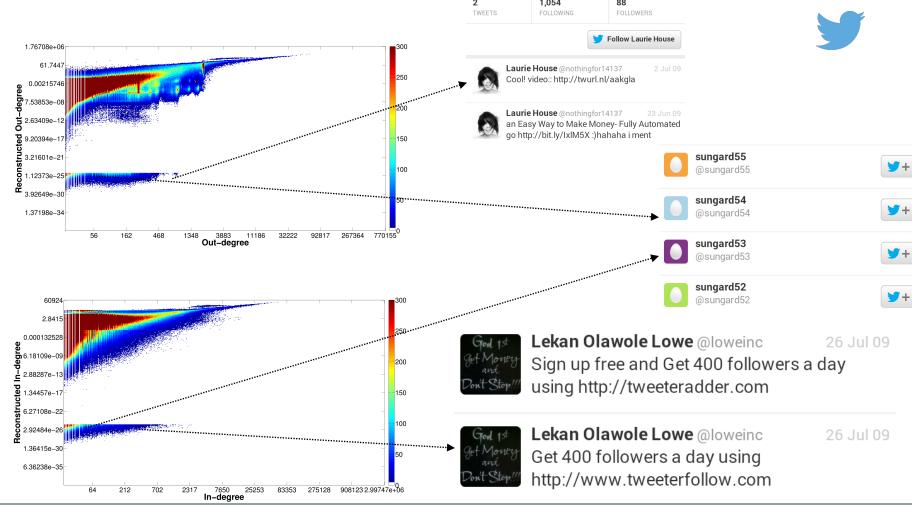
Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos *ICDM*, 2014.

Complementary Fraud Detection



Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos ICDM, 2014.

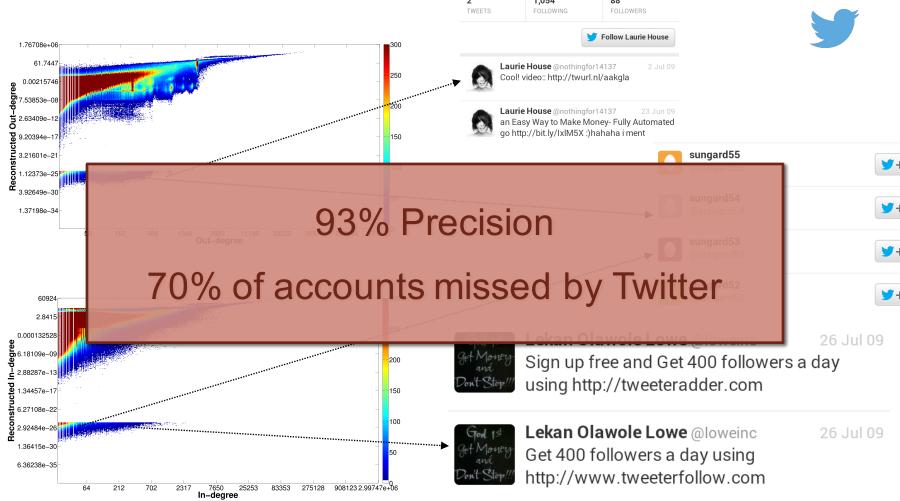
Complementary Fraud Detection



Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos

ICDM, 2014.

Complementary Fraud Detection



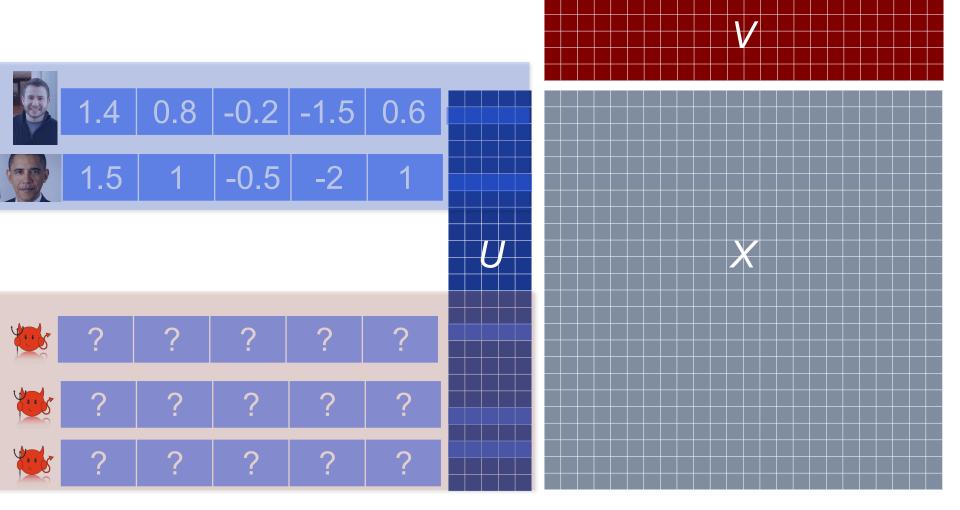
Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective Neil Shah, Alex Beutel, Brian Gallagher, Christos Faloutsos

ICDM, 2014.

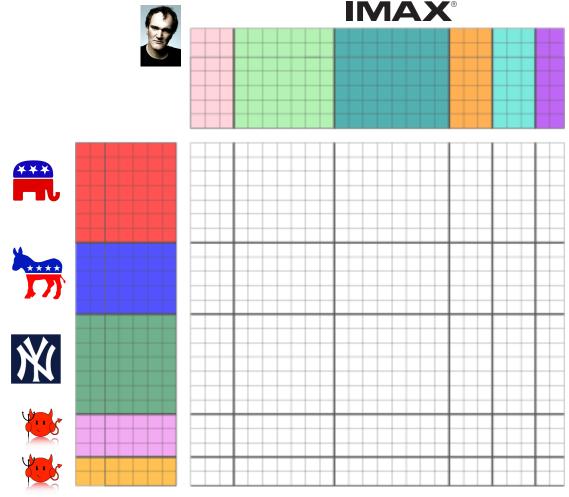
Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		√	
CDOutliers	Undirected	√		

Detecting Fraud within Recommendation

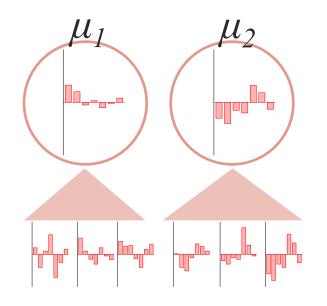


Detecting Fraud within Recommendation

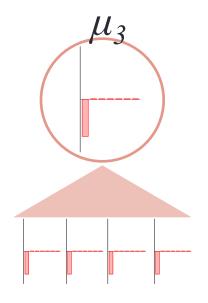


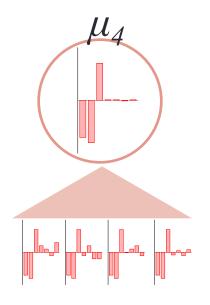
CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola *WWW* 2014

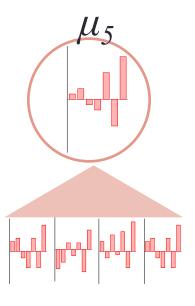
Clustering Fraudsters



KDD 2015





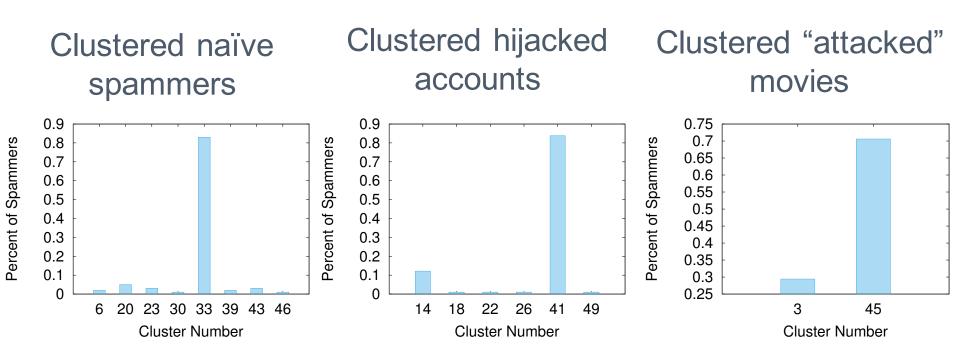


Naïve **Spammers**

Spam + Noise

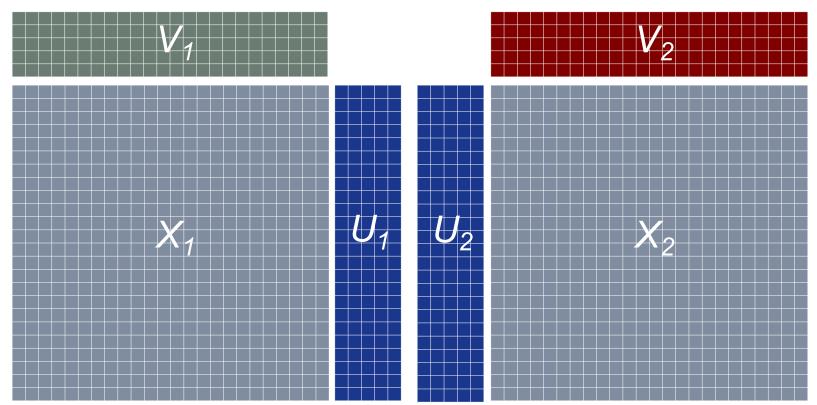
CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola WWW 2014

Clustered Fraudsters



83% are clustered together

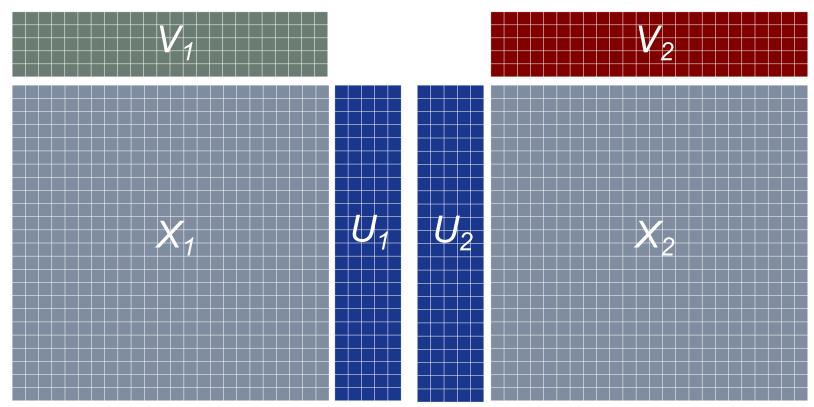
CoBaFi: Collaborative Bayesian Filtering Alex Beutel, Kenton Murray, Christos Faloutsos Alex Smola WWW 2014



Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013

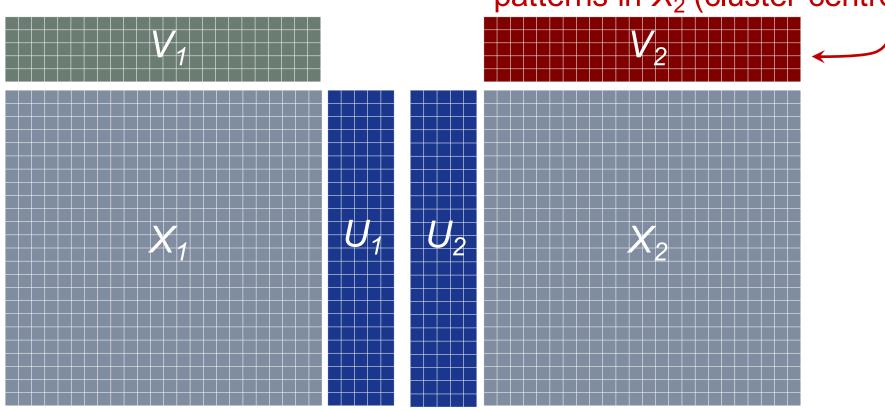
Interesting design of X_1 and X_2 ; see paper for details



Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han ECML/PKDD 2013

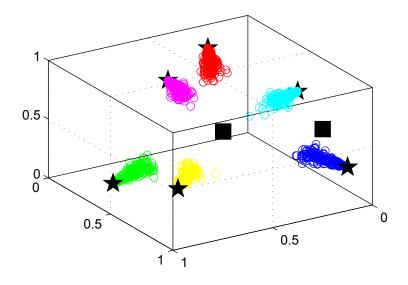
Rows of V_2 represent common patterns in X_2 (cluster centroids)

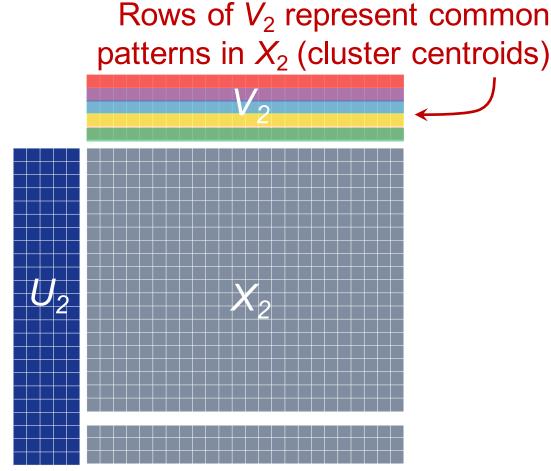


Enforce $U_1 \approx U_2$ and $U_1, U_2, V_1, V_2 \geq 0$

Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013

An anomaly is a row of X_i that is *not* similar to any row in V_i





Community Distribution Outlier Detection in Heterogeneous Information Networks Manish Gupta, Jing Gao, and Jiawei Han *ECML/PKDD* 2013

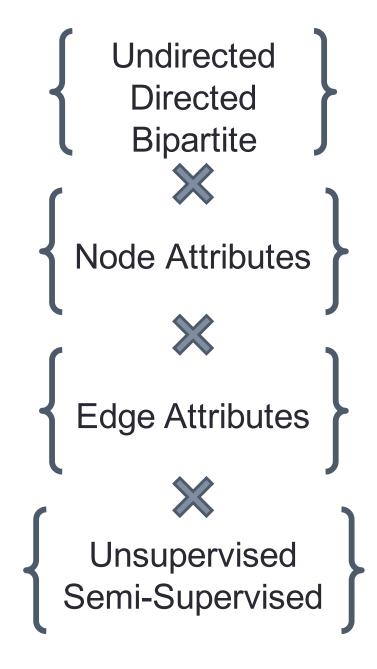
Practitioner's Guide

Method	Graph Type	Node Attributes	Edge Attributes	Seed Labels
EigenSpokes	Directed+			
Get-the-Scoop	Directed+			
fBox	Directed+			
CoBaFi	Bipartite+		√	
CDOutliers	Undirected	V		

Recap

- SVD captures communities of interest
- Bayesian methods can:
 - Handle missing values
 - Give factorization models (-> patterns, & anomalies)
- Group-outliers: spotted by CoBaFi,
 Get-the-Scoop, etc.

CONCLUSION

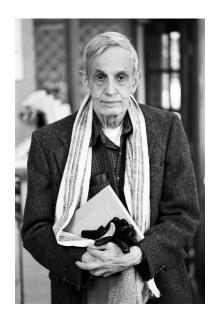


Open Problems / Opportunities

P1. Complex data: How should we integrate data from multiple data sources?

Open Problems / Opportunities

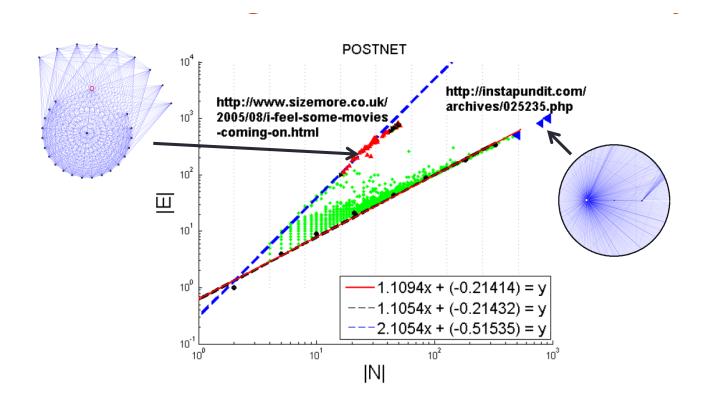
P2. Adversarial analysis: Can we offer provable guarantees on detecting fraud and spam?



P3. Early detection: Can we detect fraudsters before they cause significant damage?

Summary

Local Subgraph Analysis: Patterns and Features e.g. using ego-nets



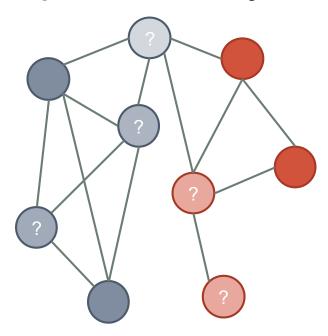
Summary

KDD 2015

Propagation Methods

"Guilt-by-association"

"Importance-by-association" = PageRank



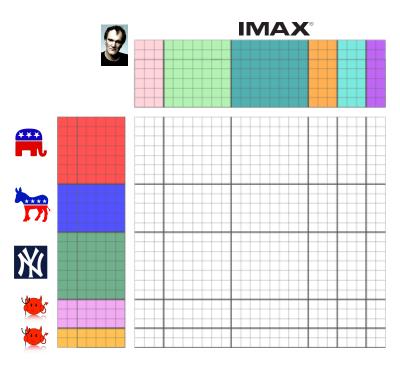


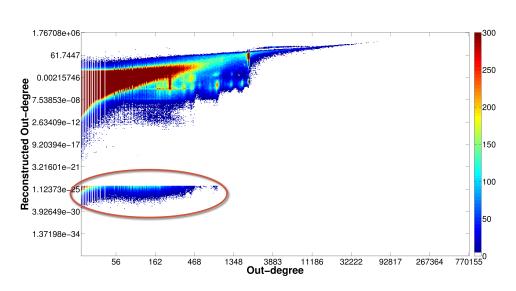
Summary

KDD 2015

Latent Factor Models

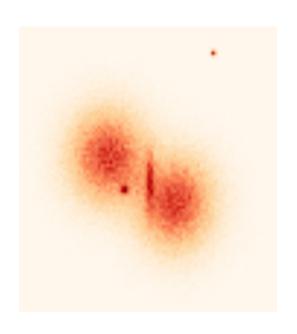
Find multiple communities, patterns and anomalies.

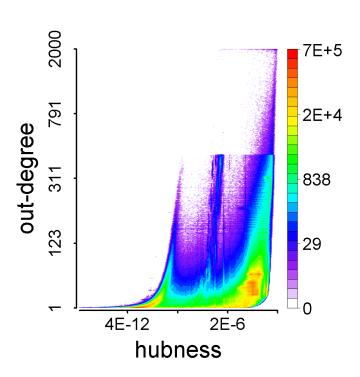




Take Away

User Modeling and Fraud Detection are two sides of the same coin.





ODDx3 workshop TODAY 9:30-5:45

Afternoon Schedule:

- Keynote by Vipin Kumar
- Panel 'What is an Anomaly?' by Tiberio Caetano, Vipin Kumar, Tina Eliassi-Rad, Ted Senator, Jimeng Sun
- Research talks

http://outlier-analytics.org/odd15kdd/

Thanks again to

KDD 2015

NSF Grant No. IIS-1408924, IIS-1408287, CAREER 1452425, DGE-1252522, ...

Questions?

KDD 2015

Carnegie Mellon

References and resources available at cs.cmu.edu/~abeutel/kdd2015 userbehavior

