
SQL Injection

By Artem Kazanstev, ITSO and Alex Beutel, Student

SANS Priority No 2
  As of September 2009, “Web application vulnerabilities

such as SQL injection and Cross-Site Scripting flaws in
open-source as well as custom-built applications account
for more than 80% of the vulnerabilities being
discovered.”

http://www.sans.org/top-cyber-security-risks/

In the news..
  Recent breach: 130 million credit and debit card numbers

from five companies were stolen using SQL injection
attack to bypass firewalls:
 “The Department of Justice issued a statement today
about the indictment, which accuses Albert Gonzalez, 28,
and two unnamed Russian citizens of stealing data from
Heartland Payment Systems Inc., 7-Eleven Inc. and
Hannaford Brothers Co. Two other companies remain
unnamed because their breaches have not been made
public, the DOJ said.”
http://preview.tinyurl.com/m6cu6n (techtarget.com)

Why are we vulnerable?
  “The risk of SQL injection exploits is on the rise because

of automated tools. In the past, the danger was somewhat
limited because an exploit had to be carried out manually:
an attacker had to actually type their SQL statement into
a text box. However, automated SQL injection programs
are now available, and as a result, both the likelihood and
the potential damage of an exploit has increased
enormously.”
http://preview.tinyurl.com/ycucfm4 (Techtarget.com)

SQL injections
Segment Group: inbound
Filter No.: SQL Injections

Action Type: Blocks
Severity: All
From: Tue Sep 01 00:00:00 EDT 2009
To: Thu Oct 01 00:00:00 EDT 2009

Filter Name Filter No Source IP Dest IP
 Hits Severity

5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 81.27.33.240 152.3.140.5 46 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 117.104.162.225 152.3.140.5 32

 Major
5413: HTTP: WordPress SQL Injection Vulnerability 5413 66.63.167.50 152.3.198.32 32 Critical
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 85.13.135.192 152.3.196.58 19 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 82.150.137.70 152.3.196.58 17 Major
5413: HTTP: WordPress SQL Injection Vulnerability 5413 69.65.40.176 152.3.56.29 16 Critical
5413: HTTP: WordPress SQL Injection Vulnerability 5413 69.65.40.176 152.3.8.134 16 Critical
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 74.108.14.121 152.3.58.179 14 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 213.21.176.228 152.3.196.58 13

 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 117.104.162.225 152.3.196.58 13

 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 41.102.201.243 152.3.110.221 12

 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 77.73.98.177 152.3.196.58 11 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 41.102.225.65 152.3.6.172 10 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 91.212.140.49 152.3.196.58 10 Major
5389: HTTP: SQL Injection Evasion (MySQL Functions) 5389 85.198.8.130 152.3.140.5 10 Major
......

The Potential Attack Surface
  The number of database-driven websites in datacenters

only: around 400

Why are we vulnerable?
  “Programmers who aren't security savvy are coding SQL

injection as a feature in some Web applications, putting
users at risk when an application goes live or is
distributed to affiliates of online advertising networks.”

http://preview.tinyurl.com/mv5tw8

Outdated and orphan apps

SANS Courses
  2-4 Day Developer Courses

  538 Web Application Pentesting Hands-On Immersion
  536 Secure Coding for PCI Compliance
  530 Essential Secure Coding in Java/JEE
  548 Secure Coding in C: Developing Defensible Applications
  544 Secure Coding in .NET: Developing Defensible Applications
  545 Secure Coding in PHP: Developing Defensible Applications
  422 Defending Web Applications Security Essentials
  541 Secure Coding in Java/JEE: Developing Defensible Applications

http://www.sans.org/security-training/courses.php#developer

What is SQL?
  Structured Query Language
  Almost all modern web applications use a database back-

end to store data
  Majority of databases use a variant of SQL as a querying

language to retrieve information from the database
  MySQL, MSSQL, Postgresql, DB 2

  Flexible and robust but if not carefully implemented can
make a server extremely vulnerable.

SQL Injection

  One common way to execute a query command is to
pass a SQL string to the Database Management System
(DBMS)

  In many cases, this string is dynamically crafted based on
user input

  “Tell me everything you know about ….”
  “Phil Beutel”
  “Phil Beutel or Phillip Beutel”
  “Phil Beutel. If you cant find him just burn up all your records.”

  “SELECT * FROM Users WHERE username=‘”.
$_GET[‘name’].”;”

Little Bobby Tables

Courtesy of xkcd.com

SQL capabilities
  Normally just used for SELECT, INSERT, UPDATE
  Many other commands exist that can be manipulated:

  DELETE, CREATE, ALTER, DROP, UNION, JOIN, INTO

  Stacked queries
  Allow for multiple SQL queries in one string

Fingerprinting
  An important element of SQL injection is fingerprinting
  Detect a vulnerability by forcing an error in the SQL

script
  Errors if not appropriately caught can give detailed

information to users about database structure such as
table names, column names, and the structure of a given
SQL request.

query_error_report(SELECT clicked FROM
user_article WHERE user_id = 68 AND article_id
= INJECTION;) called at [/home/content/full/
address/html/dbms_caller.php:10]!

Example Users Table
username password isAdmin SSN Zip Credit

Artem f9f16d97c 0 123-45-6789 12345 5555555555

Alex b6d1f1992 1 987-65-4321 12345 2222222222

Patti 8c6f2cab3 0 555-55-5555 54321 7777777777

Phil 648f3a03 0 112-35-8132 13455 8914423337

Stephen d6a6bc0d 0 761-09-8715 97258 4418167651

Tucker a47cbe66 1 094-61-7711 28657 4636875025

Cooper 7c6ef401 0 121-39-3196 41831 7811514229

Example of a simple SELECT manipulation
  Without proper sanitization, users can manipulate log in

scripts:
SELECT * FROM Users WHERE username = ‘$_GET[‘name’]’!
  What if name is set to my name’ OR 1=1 /*!

  The apostrophe mark after my name ends that string being
compared to the name column.

  By doing OR 1=1 suddenly every entry in the table will be valid
  Need to ignore all other input as a comment so we use /*

  Rather than being a valid user, the script will most likely take
the first returned result from the table, which will be the first
entry, and now the person has gained control of someone
else’s account

  Of course this can be manipulated even more by appending
AND isAdmin=1 which will then only return administrative
users.

How to steal information with SELECT
  What if you had a page that said who was from a given

location:
  example.com/who.php?zip=12345
  SELECT username FROM Users WHERE Zip =
$_GET[‘zip’]!

  Page returned looks like:

Users from 12345:
• Alex
• Artem

Stealing the “Private” information
  Now what if the query were this:

  example.com/who.php?zip=12345 UNION SELECT SSN as
username FROM Users

  SELECT username FROM Users WHERE Zip=12345
UNION SELECT SSN as username FROM Users!

  Page returned now looks like:

Users from 12345:
• Alex
• Artem
• 123-45-6789
• 987-65-4321
• 555-55-5555
• 112-35-8132
• 761-09-8715
Etc.

Stacked Queries
  Some DBMS’s and programming languages support

stacked queries.
  Allow for multiple, distinct queries within one query

string:
  INSERT INTO Users VALUES (‘Alex’); SELECT * FROM Users;

ASP.NET ASP PHP

MySQL Supported Not Supported Not Supported

MSSQL Supported Supported Supported

Postgresql Supported Supported Supported

Table from Muhaimin Dzulfakar at BlackHat USA 2009

Stacked Query Risks
  Increased functionality, increased risk
  Same vulnerabilities can be exploited, but with this users

have much more power because now they can use other
commands that normally require their own query.

INSERT INTO Users VALUES (‘ ‘ , NOW()); !

ME’,NOW()); DELETE * FROM Users; /*!

INSERT INTO Users Values (‘ME’,NOW()); DELETE *
FROM Users; /*’ ,NOW());!

Advanced Hacks
  Can even use SQL injection (with or without stacked

queries) to write to the file system
  Some DBMS have functions for logging information or

loading in files.
  Example injection string:

 some_id UNION SELECT 0x0123ABCD, 0x00
INTO OUTFILE ‘/var/www/
meterpreter.exe’ /*

Hack from Muhaimin Dzulfakar at BlackHat USA 2009

Consequences
  Even basic hacks can be used to fingerprint databases and

get password hashes or other sensitive user information
  A more stealthy hacker may simply update data such as

HTML that will be displayed to users so that he can
perform a XSS or other attack

  Vulnerabilities can result in data loss through deleting
individual records or whole databases

  Advanced techniques described earlier can give users a
back door to the server, and thus much more access to
the system

Preventing SQL Injection
  Good news: There are multiple ways to prevent these

issues.
  Bad news: Slightly different in each language
  Two main solutions:

  Check the form of the input correctly in each case and escape
inappropriate characters

  Keep instructions separate from input through special methods
and well written stored procedures

Sanitizing Input (in PHP)
  Two main types of sanitization

  Strings
  SELECT * FROM Users WHERE username=‘[INPUT]’;!
  Input ended by single quote

  Other types of input such as numbers
  SELECT * FROM Users WHERE Zip=[INPUT];!
  No single quote required

Sanitizing Strings
  Escape characters lets the DBMS know that a given

character is input, not instruction.
  Common in other parts of programming such as \n for new

line

  Escaping certain characters makes it impossible for input
to corrupt the request.
  $sInput = mysql_real_escape_string($input);!

  Usually there are other characters other than you realize that
are dangerous so don’t make your own escape method, use the
database’s.

Sanitizing other types of inputs
  For other types of inputs, need to be more specific in

checking based on what value you are expecting.
  Language will still give you a string, but must check if it

matches expected form
  If you’re expecting a number, check that the input is

numeric.
  is_numeric($input)

  Regular expressions or other methods may be necessary
for other inputs

Separate instructions from input
  Stored Procedures

  Typically used for large, repeated functions
  By construction, all instructions reside completely separately from

input – Instructions in DBMS, input passed to the DBMS separately
  Still requires that stored procedures are written to avoid SQL

injection as there are cases that simply execute a SQL string:
  EXEC, similar to eval in other languages

  Parameterized input
  Pass SQL string with “blanks” for input and input passed as

extra parameters:
cursor.execute("SELECT * FROM Users WHERE email
= '%s' AND pw = '%s' " ,(email , password)) !

Designer logic
  Always important to think: “Can my code, if used in an

unintended way, do things I don’t want it to do?”
  Be careful about what you consider to be trusted input.

Hackers can modify some values that you may expect are
safe (example: user-agent)

  Hide errors from users
  Try to make sure input matches what you expect as

closely as possible
  Always sanitize input

